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Abstract

We generalize results on the p-adic valuations of S(n, k), the Stirling number of the
second kind and s(n, k), the Stirling number of the first kind. We have several new
estimates for these valuations, along with criteria for when the estimates are sharp.
The primary foci are the explicit evaluation of ν2(S(n, k)) with n = c2h, k = b2h+a,
a, b, c, h, k, n ∈ Z+, and 1 ≤ a ≤ 2h−1, and νp(S(n, k)) when n = cph for an odd
prime p. We have strong new results, which generalize and strengthen previous
results, for all primes. We also have some new results on the p-adic valuations
νp(s(n, k)) for all primes. We generally assume that p− 1 | n− k for exact values of
νp(S(n, k)) or νp(s(n, k)). In addition, we have proved some new Amdeberhan-type
identities for Stirling numbers of both kinds. We also extend some recent results
and propose two new conjectures, as well as proofs and extensions of previous ones.

1. Introduction

Let n, k ∈ Z+, and σp(k) and νp(k) denote the digit sum in the base p representation

of k and the highest power of the prime p dividing k, respectively. In particular,

for p = 2, let [n] be the set of 2-powers in the base 2 expansion of n, i.e., [n]

corresponds to the ones in the expansion, and σ2(n) = #([n]). In order to make the

paper self-contained as much as possible, more definitions are provided in Section A.

In this paper we study certain p-adic properties of the Stirling numbers of the

second kind S(n, k) and of the first kind s(n, k). In recent years several papers

appeared in which the p-adic properties of these numbers and the 2-adic proper-

ties, in particular, have been investigated. Various efforts were made to deter-

mine congruences and the p-adic valuations of both kinds of Stirling numbers, e.g.,

[4, 5, 6, 7, 9, 11, 14, 16, 17, 18, 19, 22, 25, 26, 10] and [13, 15, 20, 21, 24], etc.
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Some of these results are universal and deal with νp(S(n, k)) and νp(s(n, k)) with

no particular restrictions on n and k, while other results focus on cases when n is

in the form of cph with c, h ∈ Z+. There are results of an experimental nature too,

e.g., Amdeberhan et al. [6] establish patterns in the 2-adic evaluation of S(n, k)

with different values of k.

The first efforts to analyze the p-adic behavior of S(n, k) focused on cases with

n = cph and h sufficiently large with or without specific lower bounds on h. A special

2-adic study of the Stirling numbers of the second kind was initiated by Lengyel in

1994 (cf. [16, Theorems 1 and 2]), which established that ν2(S(c2h, k)) = σ2(k)− 1

for all h ≥ k − 2 and contained a conjecture that was proven by De Wannemacker

in [10] in 2005.

Theorem 1 ([10, Theorem 1]). Let h, k ∈ N and 1 ≤ k ≤ 2h. Then we have

ν2(S(2h, k)) = σ2(k)− 1. (1.1)

Lengyel extended this result in the following theorem.

Theorem 2 ([17, Theorem 2]). Let c, k, h ∈ N and 1 ≤ k ≤ 2h. Then

ν2(S(c2h, k)) = σ2(k)− 1. (1.2)

He also provided alternative proofs in [18]. The major development came in a

sequence of papers by Adelberg (cf. [4, 5]) that depended on his previous work

on higher order Bernoulli numbers and polynomials, and on the relation between

higher order Bernoulli numbers and Stirling polynomials. In [4, Theorem 2.2],

Adelberg generalized Equation (1.1) for arbitrary primes and replaced the term

2h with the condition that S(n, k) is a so-called minimum zero case (MZC). Note

that S(c2h, k), 1 ≤ k ≤ 2h, with c odd is an MZC if c = 1, but not otherwise.

A remarkable short and instructive proof of Theorem 1 is presented as a special

case in [4, Theorem 2.2]. To deal with the case of c > 1 and odd, Adelberg also

introduced the notion of almost minimum zero case (AMZC) in [5] that resulted in

a short proof of Theorem 2. We define these concepts in relation with inequality

(1.3). De Wannemacker’s useful inequality [10, Theorem 3] states that

ν2(S(n, k)) ≥ σ2(k)− σ2(n) (1.3)

with n, k ∈ N and 0 ≤ k ≤ n.

Although (1.3) is general in n and k, it was Adelberg who developed a general

theory in [4, 5] that removed the limitations due to the assumed nature of n = c2h

and k : 1 ≤ k ≤ 2h in S(n, k) that were used in Theorems 1 and 2.

Adelberg called the estimate (1.3) the minimum zero estimate, which he improved

in several ways. He generalized it to odd primes, and proved a criterion for when

it is sharp, i.e., when S(n, k) is a minimum zero case (MZC). He also added an
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additional term to improve the estimate in all cases where it is not sharp, namely

he proved in [5, Theorem 3.3] that

ν2(S(n, k)) ≥ σ2(k)− σ2(n) +N, (1.4)

where N = #{[n]
⋂

[n− k]}, i.e., the number of 2-powers common to the base

2 expansions of n and n − k, which he called the almost minimum zero esti-

mate. Adelberg showed that the MZC occurs if and only if N = 0 in (1.4), i.e.,

ν2(S(n, k)) = σ2(k) − σ2(n). He also showed that his new estimate is always non-

negative, unlike De Wannemacker’s estimate (1.3), which can be negative. If (1.3)

is not sharp but (1.4) is sharp, we have an almost minimum zero case (AMZC).

In addition, he obtained certain “shifted” estimates and cases for p = 2, which

obviate the need for many inductions. In this paper we generalize these concepts to

arbitrary primes. In particular, the shifted cases give us insight into certain cases

where νp(S(n+ 1, k+ 1)) = νp(S(n, k)) and where νp(s(n− 1, k− 1)) = νp(s(n, k)),

continuing the generalization that was done in [4] of what was originally a conjec-

ture of Amdeberhan et al.; cf. [6]. We give geometric interpretations of all the cases

in terms of the Newton polygons of certain higher order Bernoulli polynomials.

The cases when we get exact values for the p-adic valuations generally assume

that p − 1 | n − k. Our analysis is based on the “maximum poles” of higher order

Bernoulli polynomials, which are the highest powers of p in the denominators of

their coefficients. Using these polynomials is a unique feature of the presented

method, which generalizes the approach used in [5] for p = 2. The results for p = 2

are simpler and more explicit than the results for odd primes, primarily because

the maximum pole is much easier to determine for p = 2, where there is a simple

formula depending on base 2 expansions.

In the analysis of ν2(S(c2h, k)) the range k ∈ [1, 2h+1] has been analyzed in [5,

Theorem 3.4] with c ≥ 3 odd. In this paper we focus on different ranges and sets

of k values. Of course, Theorem 2 has already dealt with the range k ∈ [1, 2h] and,

as it turns out, the answer essentially relies on the fact that S(c2h, k) is an AMZC.

The upper range k ∈ [(c− 1)2h + 1, c2h] is covered by a theorem due to Zhao et al.;

cf. [25].

Theorem 3 ([25, Theorem 1.2]). Let a, c, h ∈ N with c ≥ 1 being odd and 1 ≤ a ≤
2h. Then

ν2(S(c2h, (c− 1)2h + a)) = σ2(a)− 1. (1.5)

Adelberg provided a short proof in [5, Theorem 2.1] by observing that in this

case S(c2h, (c− 1)2h + a) is an MZC.

We focus our study on the remaining range k ∈ [2h + 1, (c− 1)2h] and derive one

of our main results Theorem 12 on ν2(S(n, k)) with n = c2h, c > 1, k = b2h + a, 1 ≤
a ≤ 2h−1. The special case when b = 1, which was a strong form of a long-

standing conjecture of Lengyel, was proven by Adelberg in [5, Theorem 2.7]. The
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proof illustrates Adelberg’s method, which depends on the analysis of higher order

Bernoulli numbers and polynomials. It is further extended in Theorem 24, with an

Amdeberhan-type result.

An important result for the calculation of p-adic valuations νp(S(n, k)) for odd

primes p is Theorem 17, which broadly generalizes previous known results. We give

further theorems of the same type with increasing generality, and which illustrate

what is essential for the calculations; cf. Theorems 18 and 19. Theorem 17 and

its first corollary, Corollary 4, show that if ph | n, k ≤ ph, and p− 1 | n− k then

νp(S(n, k)) = bσp(k)−1)/(p−1)c. This result is consistent with the formula proven

in [11, Theorem 1]; cf. Theorem 7, but without the restrictive assumption that

p− 1 | n. Since νp(k!) = (k−σp(k))/(p− 1) in the formula in [11] for νp(k!S(n, k)),

the estimates and exact values given are equivalent to ours. Our theorem also gets

the estimate without that restrictive assumption p− 1 | n− k, which is in fact the

almost minimum zero estimate for νp(S(n, k)). The remarkable thing about the

exact value and estimate is that they are independent of n and h. Corollary 4

generalizes Equation (1.2) to all primes.

Our primary tool for obtaining these results is the analysis of higher order

Bernoulli polynomials, and specifically of their poles, which is determined by consid-

eration of their Newton polygons. The Appendix collects the essential background,

and includes the new results Theorem 32 for odd primes and Theorem 33 for p = 2,

which lead directly to the theorems about Stirling numbers. These Appendix the-

orems have great importance for this paper.

We also extend the Amdeberhan-type results in Theorems 15, 20, 21, 22, and 23

for S(n, k), as well as results in Sections 4 and A; cf. Theorems 27, 29, 30 and 31

for s(n, k).

To a large extent Adelberg reduces the study of p-adic valuation of Stirling

numbers to the study of p-adic valuation of binomial coefficients; cf. [4, 5]. We

extend his techniques in the current paper, which provide a unified treatment for

Stirling numbers of both kinds and illustrate the duality between Stirling numbers

of the first and second kinds.

Section 2 summarizes some useful results, including criteria for the different cases.

Besides Theorem 12, noted above, Section 3 contains Theorems 15 and 16, which

are very useful for determining the cases, i.e., when our estimates are sharp, for odd

primes and for the even prime. These theorems provide the mechanism to establish

AMZ and SAMZ cases and Amdeberhan-type results. Examples are provided to

illustrate some of the results. It also contains several major theorems that vastly

generalize previous results on these p-adic values, as well as two new conjectures,

Conjectures 2 and 3. In Theorem 13 we prove a result which corrects and sharpens

another open conjecture of Lengyel (cf. [19, Conjecture 1]), and which leads to

a consideration of Fibbinary numbers. We also state Theorem 14, which is an

extension of a previously proven result Theorem 4(a), with a similar proof. We
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note that in 2014 Davis [9, Theorems 1.1, 1.2, and Propositions 3.1] proved similar

results (cf. [7], too), apparently not knowing about [19, Conjecture 1] and [17,

Theorem 5] and without providing a good estimate for when the limiting 2-adic value

is achieved. Section 4 deals with Stirling numbers of the first kind, and contains

many results analogous to those in the earlier sections. Our goal is to demonstrate

the applicability of our methods, but the results regarding Stirling numbers of the

first kind are somewhat limited in scope. An Appendix is included as Section A in

which we provide the requisite definitions and results, detailed descriptions of the

techniques applied, as well as some essential new material including the fundamental

Theorems 32 and 33.

2. Preparation

2.1. Summary of Previous Results

For p = 2 the most general result, Theorem 12, deals with the range k = b2h + a ∈
[b2h + 1, b2h + 2h−1] with b ∈ N. First we study the k values for which ν2(k) ≥ h.

Adelberg found the following version of [17, Theorem 5] which originally proved that

ν2(S(c2h, b2h)) = σ2(c− b) +σ2(b− 1)−σ2(2c− b− 1) for b, c ∈ N, 1 ≤ b ≤ c, and h

sufficiently large. Adelberg’s version [5, Theorem 2.6] provides a lower bound on h

which is exponentially better than the one in [17] and we will use it in Conjecture 2.

Theorem 4 ([5, Theorem 2.6]). With b, c ∈ Z+ and b ≤ c,

(a) if ν2(b) < ν2(c) or if ν2(b) = ν2(c) and 2ν2(c−b) ∈ [b], then

lim
h→∞

ν2(S(c2h, b2h)) = σ2(b)− σ2(c) + ν2

((
2c− b
c

))
and this limit is attained if 2h−1+ν2(c−b) ≥ ν2

((
2c−b
c

))
;

(b) if ν2(c) < ν2(b) or if ν2(c) = ν2(b) and 2ν2(c−b) ∈ [c], then

lim
h→∞

ν2(S(c2h, b2h)) = σ2(b− 1)− σ2(c− 1) + ν2

((
2c− b− 1

c− 1

))
.

Furthermore, if ν2(c) < ν2(b), the limit is attained if 2h−1+ν2(c) ≥
ν2

((
2c−b−1
c−1

))
, while if ν2(c) = ν2(b) and 2ν2(c−b) ∈ [c], the limit is attained if

2h−1+ν2(c) > ν2

((
2c−b−1
c−1

))
.

Remark 1.

(i) Part (a) of the preceding theorem is characterized by 2ν2(c−b) ∈ [b] and part

(b), by 2ν2(c−b) ∈ [c].
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(ii) If ν2(b) ≤ ν2(c) then ν2(
(
2c−b
c

)
) = ν2(b)− ν2(c) + ν2(

(
2c−b−1
c−1

)
), implying that

the limit formula given in part (a) agrees with the formula in part (b) in this

case, and the estimate for when the limit is attained is at least as good.

(iii) The estimates given in Theorem 4 are not always sharp. For example, if

c = 30 and b = 1, then ν2(S(c2h, 2h)) = σ2(2h)− 1 = 0, by Theorem 2 for all

h ≥ 0. On the other hand, the estimate of Theorem 4(a) requires only that

2h−1 ≥ ν2(
(
59
30

)
) = 3, i.e., that h ≥ 3.

In the range k ∈ [2h + 1, 2h + 2h−1] we consider

ν2(S(c2h, 2h + a)) (2.1)

with c ≥ 3 and 1 ≤ a ≤ 2h−1. Unless c ≥ 2 is an even integer, in which case the

2-adic order is simply σ2(a) by Theorem 2, it turns out that, as opposed to the

cases covered by Theorems 2 and 3, the 2-adic valuation depends on ν2(c− 1) as it

was suggested in the next conjecture.

Conjecture 1 ([17, Conjecture 1]). We have

ν2(S((2r + 1)2h, 2h + a)) = σ2(a) + r. (2.2)

for integers r ≥ 1, 1 ≤ a ≤ 2h−1, and sufficiently large h.

Lengyel also proved the following generalized version of the conjecture although

based on the assumption that ν2(a) and thus, h are large.

Theorem 5 ([17, Theorem 3]). We have

ν2(S(c2h, 2h + a)) = σ2(a) + ν2(c− 1) (2.3)

for c ≥ 3 odd, 1 ≤ a < 2h, if

ν2(a)− σ2(a) > ν2(c− 1) + 1.

Numerical evidence suggested that Conjecture 1 and Theorem 5 hold true with

much weaker assumptions. The papers by Adelberg [4, 5] provide us with the tech-

nical tools to handle these cases. Adelberg [5] gives the general form in Theorem 6,

which contains Conjecture 1 and Theorem 5 with improved explicit bounds on h,

as special cases.

Theorem 6 ([5, Theorem 2.7]). Let c ≥ 3 be odd and 1 ≤ a ≤ 2h−1. Then

ν2(S(c2h, 2h + a)) = σ2(a) + ν2(c− 1)

if 2h−2 ≥ σ2(c) + ν2(c− 1)− 1 = σ2(c− 2) + 1.
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Theorem 6 implies that Conjecture 1 is true as the special case with σ2(c) = 2,

and it provides a bound on the smallest value of h.

Corollary 1 ([5, Corollary 5.2]). We have

ν2(S((2r + 1)2h, 2h + a)) = σ2(a) + r (2.4)

for integers r ≥ 1, 1 ≤ a ≤ 2h−1, and h ≥ dlog2(r + 1)e+ 2.

In this paper we further generalize Theorem 6. In fact, one of our main results

is Theorem 12 in which we determine the exact value of ν2(S(c2h, b2h + a)) with

a, c, h ∈ Z+, b ∈ N, and 1 ≤ a ≤ 2h−1. Finally, we propose Conjecture 2, which

deals with the cases in a statistical sense. We include related results on ν2(S(c2h +

1, b2h + a+ 1)) and ν2(S(c2h + 2, b2h + a)) as Theorem 24 and Conjecture 3.

For odd primes p the following theorems apply. We will generalize them in

Theorem 17.

Theorem 7 ([11, Theorem 1]). For an odd prime p, if n = c(p− 1)ph, 1 ≤ k ≤ n,

c and h are positive integers such that GCD(c, p) = 1, h is sufficiently large, and

k/p is not an odd integer, then

νp(k!S(c(p− 1)ph, k)) =

⌊
k − 1

p− 1

⌋
+ γp(k),

where γp(k) is a nonnegative integer. Moreover, if k is a multiple of p − 1, then

γp(k) = 0.

For p = 2 and 1 ≤ k ≤ 2h the result also holds without the requirement that k/p

is not an odd integer, according to Theorem 2.

Note that Theorem 7, which assumes that p− 1 | n and provides an estimate

for νp(S(n, k)), agrees with our almost minimum zero estimate by Theorem 17. If

p− 1 | k as well, then the estimate is sharp, and we have an almost minimum zero

case. The theorem also assumes that ph | n, with h sufficiently large. Observe also

that our Theorem 17 gives us a good bound for what it means for h to be sufficiently

large. Related results can be found in [23].

Other aspects of νp(S(c(p − 1)ph, k)), with c ≥ 1 integer, are discussed and

explored using p-adic analytic techniques by Miska in [22], which lead to the proof

of conjectures suggested in [6].

Theorem 8 ([4, Theorem 2.2]). Let n = cph, with 1 ≤ c ≤ p− 1, and assume that

1 ≤ k ≤ n and p− 1 | n− k. Then S(n, k) is an MZC and

νp(S(n, k)) =
σp(k)− σp(n)

p− 1
=
σp(k)− c
p− 1

.

Remark 2. Note that there is no special bound on h in Theorems 1, 2, 3, and 8,

while in Theorems 4, 6, 12, 13, 14, 17, and Corollary 1 effective lower bounds are

given on h. Theorems 5, 7, and Conjecture 1 require sufficiently large values of h

without specific bounds.
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2.2. Estimates and Cases for νp(S(n, k)) for All Primes p

In [4] Adelberg considered the minimum zero estimate (MZ)

νp(S(n, k) ≥ (σp(k)− σp(n))/(p− 1). (2.5)

He found simple necessary and sufficient conditions for when this estimate is sharp,

called the minimum zero case (MZC), namely r = (n−k)/(p−1) ∈ N, and S(n, k) is

an MZC if and only if p -
(
n+r
r

)
. He tied this result to higher order Bernoulli numbers

by showing that S(n, k) is an MZC if and only if νp(B
(−k)
n−k ) = −σp(n− k)/(p− 1).

In [5], dealing only with the prime p = 2, Adelberg found the additional shifted

minimum zero estimate (SMZ) ν2(S(n, k)) ≥ σ2(k−1)−σ2(n−1), and showed that

this is sharp, called shifted minimum zero case (SMZC) if and only if 2 -
(
n−1+r

r

)
. In

addition, he also found more refined estimates depending on the base 2 expansions of

n, k, and n−k, called the almost minimum zero (AMZ) and shifted almost minimum

zero (SAMZ) estimates, and defined the almost minimum zero case (AMZC) and

shifted almost minimum zero case (SAMZC) as when these estimates are sharp.

He noted that these estimates depended on the maximum poles of the associated

higher order Bernoulli polynomials, i.e., the highest powers of 2 in the denominators

of their coefficients.

In this paper, we are interested in extending these concepts to all primes p, so

we have to define them for odd p and establish basic properties. The key formulas

and definitions are summarized in Section A. We have the connecting formulas (cf.

Equation (A.2))

S(n, k) =

(
n

k

)
B

(−k)
n−k (2.6)

and

S(n, k) =

(
n− 1

k − 1

)
B

(−k+1)
n−k (1). (2.7)

The second formula, called shifted, is obtained by replacing (n, k) by (n− 1, k − 1)

in the higher order Bernoulli polynomial B
(−k)
n−k (x), and then replacing the constant

term B
(−k)
n−k by B

(−k+1)
n−k (1), which is the constant term of B

(−k+1)
n−k (x+ 1). From the

second formula we get the shifted minimum zero estimate (SMZ):

νp(S(n, k)) ≥ (σp(k − 1)− σp(n− 1))/(p− 1). (2.8)

When this estimate is sharp we have the shifted minimum zero case (SMZC).

The SMZ estimate can be easily expressed in terms of the MZ estimate using

(2.8), namely the SMZ estimate is νp(S(n, k)) ≥ (σp(k)− σp(n))/(p− 1) + νp(k)−
νp(n) by Equation (A.1), so the two estimates are equal if and only if νp(k) = νp(n)

and the SMZ estimate is better (bigger) if and only if νp(n) < νp(k). In particular,

we get the following result.
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Theorem 9. If S(n, k) is an MZC then νp(k) ≤ νp(n), while if S(n, k) is an SMZC,

then νp(n) ≤ νp(k).

Remark 3. Obviously, the SMZ estimate for S(n + 1, k + 1) is the same as the

MZ estimate for S(n, k). We will now establish simple criteria for the MZ and SMZ

cases, and use that in Section 3.3 to determine conditions that ensure νp(S(n +

1, k + 1)) = νp(S(n, k)), which we call an “Amdeberhan-type identity.”

The following theorem follows easily from the discussion of poles summarized

in Section A.3. Our unified treatment via higher order Bernoulli numbers and

polynomials allows us to consider both kinds of Stirling numbers (cf. Section 4).

Theorem 10. If l ∈ Z, then νp(B
(l)
n ) = −σp(n)/(p− 1) if and only if νp(B

(l)
n (1)) =

−σp(n)/(p− 1).

Proof. The condition that νp(B
(l)
n ) = −σp(n)/(p− 1) is equivalent to B

(l)
n having a

pole of order σp(n)/(p − 1), so B
(l)
n , which is the constant coefficient of the higher

order Bernoulli polynomial B
(l)
n (x), having a greater pole (smaller p-adic value)

than all other coefficients of the polynomial. So this is equivalent to νp(B
(l)
n (1)),

which is the sum of all coefficients, having the same pole σp(n)/(p− 1).

The equation νp(B
(l)
n ) = −σp(n)/(p−1) is equivalent to B

(l)
n (x) being a maximum

pole case (MPC) as defined in [3], and the equation νp(B
(l)
n (1)) = −σp(n)/(p − 1)

is equivalent to B
(l−1)
n (x) being a shifted maximum pole case (SMP) as defined in

Definition 7.

Corollary 2. The S(n, k) is an MZC if and only if S(n + 1, k + 1) is an SMZC,

and if S(n, k) is an MZC and/or S(n + 1, k + 1) is an SMZC, then νp(S(n, k)) =

νp(S(n+ 1, k + 1)) = (σp(k)− σp(n)/(p− 1).

Proof. From (2.6) and Legendre’s Theorem, S(n, k) is an MZC if and only if

νp(B
(−k)
n−k ) = −σp(n− k)/(p− 1), and similarly from Equation (2.7), S(n+ 1, k+ 1)

is an SMZC if and only if νp(B
(−k)
n−k )(1)) = −σp(n−k)/(p−1). Thus, the conditions

that S(n, k) is an MZC and S(n+ 1, k+ 1) is an SMZC are equivalent. If S(n, k) is

an MZC then νp(S(n, k)) = (σp(k)− σp(n))/(p− 1). Similarly, if S(n+ 1, k + 1) is

an SMZC then νp(S(n+ 1, k+ 1)) = (σp(k)− σp(n))/(p− 1). Hence if S(n, k) is an

MZC and/or S(n+1, k+1) is an SMZC, then νp(S(n, k)) = νp(S(n+1, k+1)).

Remark 4. This corollary greatly strengthens [4, Theorem 2.5] which proved that

if S(n, k) is an MZC then νp(S(n, k)) = νp(S(n + 1, k + 1)). Since the concept of

AMZC was unavailable at that time, that is all that could be proved, but we now

have a simpler and more instructive proof.
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The formulas (2.6) and (2.7) lead to two new estimates. Let M be the highest

order pole of B
(−k)
n−k (x), i.e., the highest power of p in the denominator of its coeffi-

cients, and letM ′ be similarly defined for B
(−k+1)
n−k (x), which is obtained by replacing

(n, k) by (n− 1, k − 1). Then, since νp(B
(−k)
n−k ) ≥ −M and νp(B

(−k+1)
n−k (1)) ≥ −M ′,

we get from (2.6) and (2.7) the estimates

νp(S(n, k)) ≥ νp
((

n

k

))
−M

= (σp(k)− σp(n))/(p− 1) + σp(n− k)/(p− 1)−M (2.9)

and

νp(S(n, k)) ≥ νp
((

n− 1

k − 1

))
−M ′

= (σp(k − 1)− σp(n− 1))/(p− 1) + σp(n− k)/(p− 1)−M ′. (2.10)

Since M and M ′ are less than or equal to σp(n − k)/(p − 1), we see that these

new estimates are at least as good as the MZ and SMZ estimates, and are strictly

better if we do not have an MZC or SMZC, respectively.

The first estimate is called the almost minimum zero estimate (AMZ) and if it

is sharp we have the AMZC (almost minimum zero case). We sometimes distin-

guish the AMZC from the MZC by requiring that it not be an MZC, i.e., that

νp(S(n, k)) 6= (σp(k)− σp(n))/(p− 1). Similarly, the second estimate is the shifted

minimum zero estimate (SAMZ) and when it is sharp we have the shifted almost

minimum zero case (SAMC), which we may stipulate is not an SMZC.

Obviously, the SAMZ estimate for S(n+1, k+1) is the same as the AMZ estimate

for S(n, k).

The four cases for Stirling numbers of the second kind correspond to the four cases

for higher order Bernoulli polynomials defined in Section A.2, and the estimates for

Stirling numbers of the second kind correspond to the estimates that are implicit

for the higher order Bernoulli numbers. Since there are similar connecting formulas

with Stirling numbers of the first kind, we will develop similar estimates and cases

for the Stirling numbers of the first kind.

For Stirling numbers of the second kind with p = 2, we know that M = #([n−
k] − [n]), where A − B denotes the set difference if A and B are sets, and M ′ =

#([n−k]− [n−1]), which agrees with the definitions given in [5]. We do not have a

simple formula for the maximum pole for odd primes p, but we do have an algorithm,

which involves the Kimura N -function, for computing M . This algorithm was first

established in [1] and is described in Section A; cf. Definition 6. We also know that

M is the maximum pole of {τu|w(u) ≤ n − k}, and similarly M ′ is the maximum
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pole of {τu|w(u) = n−k}, with l replaced by l+1, using notations of the Appendix;

cf. [1] and Section A.

We will show if p is odd and p− 1 | n− k that these estimates for odd primes p

are non-vacuous (cf. Theorem 11), and use the material in the Appendix to show

there are only two possible candidates for νp((n − k)!tu) = −M , with w ≤ n− k,

and only one for νp((n−k)!tu) = −M ′, with w = n− k, thereby establishing criteria

for the AMZ and SAMZ cases, and finding simple formulas for νp(S(n, k)) in these

cases (cf. Theorem 15).

Theorem 11. The AMZ and SAMZ estimates for Stirling numbers of the second

kind are non-negative.

Proof. We prove this for the AMZ estimate of S(n, k). The proof for the SAMZ

estimate is similar. The justifications are all in the Appendix, primarily in Sec-

tion A.1.

If M is the maximum pole of B
(−k)
n−k (x), then the (longest) Kimura chain

N1, . . . , NM has length M , and n + Ni/(p − 1) has no base p carries for each i.

If i is arbitrary and e = νp(Ni), and c is the coefficient of pe in the base p expansion

of Ni, then p−c is the coefficient of pe in Ni/(p−1). If ne is the coefficient of pe in n,

then ne + p− c < p since there is no base p carry. Thus ne < c for each i. Hence by

Legendre’s Theorem, we have νp(
(
n

n−k
)
) ≥M , i.e., the AMZ estimate νp(

(
n
k

)
)−M is

non-negative. Clearly this implies that the AMZ estimate of νp(S(n, k) is between

0 and νp(
(
n
k

)
), and similarly that the SAMZ estimate of S(n, k) is between 0 and

νp(
(
n−1
k−1
)
).

Corollary 3. If νp(S(n, k)) = 0 then S(n, k) is an MZC or an AMZC and also an

SMZC or an SAMZC.

3. Main Results for S(n, k)

3.1. The Exact 2 -Adic Order

One of the original goals of this paper was to prove the vastly improved general-

ization of Conjecture 1, Theorem 12, by using generating functions as in [17] but

succeeded only in the case of a = 1. Induction proof did not seem to work either.

Although Conjecture 1 is the most special case of Theorem 12 with σ2(c) = 2 and c

odd, not even this case was proven until Adelberg’s technique, relying on the three

canonical partitions (cf. [5]) came to the rescue in his proof of Theorem 6; cf. [5,

Theorem 2.7]. The proof of this theorem is very similar to the special case b = 1

given previously.
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Theorem 12. Let a, c, h ∈ Z+, b ∈ N, and n = c2h where c > 1. Assume that

1 ≤ a ≤ 2h−1, and k = b2h+a < n. We set f(b, c) = σ2(b)−σ2(c) + ν2

((
2c−b−1

c

))
.

We have

ν2(S(n, k)) = σ2(k)− σ2(n) + ν2

((
n− k + n

n

))
= σ2(a) + f(b, c) (3.1)

if 2h−2 ≥ ν2
((

2c−b−1
c

))
. If b is odd, then the right-hand side of (3.1) equals

σ2(a) + ν2(c− b) + ν2

((
2c− b
b

))
, (3.2)

since then f(b, c) = ν2(c− b) + ν2

((
2c−b
b

))
.

Remark 5. We note that if we also assume that c > b ≥ 1 are odd integers then

2(c− b) and b have no common base 2 digits for b = 1 and 3; thus, the last term in

(3.2) is 0 in these cases, as in Theorem 6.

Proof of Theorem 12. Assume that n = c2h and k = b2h+a, with 1 ≤ a ≤ 2h−1, and

k ≤ n, so b < c. We will prove that ν2(S(n, k)) = σ2(k)− σ2(n) + ν2

((
n−k+n

n

))
=

σ2(b) + σ2(a) − σ2(c) + ν2

((
n−k+n

n

))
= σ2(b) + σ2(a) − σ2(c) + ν2

((
c−b−1+c

c

))
if

2h−2 ≥ ν2
((
c−b−1+c

c

))
.

Observe that n − k = (c − b)2h − a = (c − b − 1)2h + 2h−1 + (2h−1 − a), so

ν2

((
n−k+n

n

))
= ν2

((c−b−1)2h+c2h
c2h

))
= ν2

((
c−b−1+c

c

))
.

We use terminology from [5]; see Section A also.

Let u be a partition with w ≤ n− k. Then n− k = T +B where T is the sum of

2-powers with exponent at least h, i.e., T = (c−b−1)2h, and B = 2h−1+(2h−1−a).

We have two cases. If d = d(u) ≥ T , then [d] contains all the 2-powers of

n− k with exponent at least h, so ν2

((
n−k+n

n

))
= ν2

((
T+n
n

))
, and it follows that

ν2(2n−ktu) ≥ ν2
((
n−k+k

n

))
, with equality if and only if ν2(u) = n− k, i.e., exactly

if u1 = n− k. That takes care of all the terms with big d, i.e., d ≥ T .

In the other case d < T and then n − k − d > B = 2h−1 + (2h−1 − a) ≥ 2h−1.

Then n−k−ν2(u) ≥ (n−k−d)/2 ≥ 2h−2 ≥ ν2
((
n−k+n

n

))
if 2h−2 ≥ ν2

((
n−k+n

n

))
,

so for these terms as well ν2(2n−ktu) > ν2

((
n−k+n

n

))
.

Thus the partition with u1 = n − k gives the unique dominant term (lowest

value), and the theorem is proved.

Finally, we prove that the two expressions in (3.1) and (3.2) are equal provided

that b is odd.

We use identity (A.1). Let b be odd. Then σ2(a)+σ2(b)−σ2(c)+ν2(
(
2c−b−1

c

)
) =

σ2(a) + σ2(b) − σ2(c) + σ2(c) + σ2(c − b − 1) − σ2(2c − b − 1) = σ2(a) + σ2(b) +
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(σ2(c− b)−1 +ν2(c− b))− (σ2(2c− b)−1 +ν2(2c− b)) = σ2(a) +ν2(c− b) +σ2(b) +

σ2(2(c − b)) − σ2(2c − b) = σ2(a) + ν2(c − b) + ν2(
(
2c−b
b

)
), since 2c − b is odd, so

ν2(2c− b) = 0.

We note that if b is odd and is a bottom segment of c then 2c− b = 2(c− b) + b

and [2(c− b)]
⋂

[b] = ∅, so the last binomial coefficient is odd. Thus, we recover the

formula ν2(S(c2h, b2h +a) = σ2(a) + ν2(c− b) = σ2(a) +α, where 2α is the smallest

2-power in [c] greater than all the 2-powers in [b].

We prove the following theorem, which corrects and sharpens an open conjecture

made in 2012 ([19, Conjecture 1]). We will subsequently extend this result in

Theorem 14.

Theorem 13. For c, h, L ∈ N, if c odd and h is sufficiently large, we have that

ν2(S(c2h+1 + L, c2h + L)) is constant for all 0 ≤ L < 2h. In fact, we have

ν2(S(c2h+1 + L, c2h + L)) = 2σ2(c)− σ2(3c). (3.3)

The lower bound 2h−1 ≥ ν2(
(
3c
c

)
) for h suffices.

Proof. We use the notation and results of Section A, especially of Section A.4. In

particular, [a] is the set of 2-powers in the base 2 expansion of a, and if u is a

partition then tu =
(
s
d

)(
d
u

)
/Λu where s = −k − (n− k)− 1 = −n− 1, so that

(
s
d

)
=

(−1)d
(
d+n
n

)
. We know by formula (A.2) that S(n, k) =

(
n
k

)
B

(−k)
n−k , and B

(−k)
n−k =

(−1)n−k(n − k)!
∑
w≤n−k tu by formula (A.4). If n = c2h+1 + L and k = c2h + L,

then n−k = c2h and ν2(n−k) = h. Let u′ be the partition concentrated in place 1

with u′1 = n−k. The idea of the proof is to show that if u 6= u′ and w(u) ≤ n−k then

ν2(tu) > ν2(tu′). Hence ν2(B
(−k)
n−k ) = ν2((n− k)!tu′) = −σ2(n− k) + ν2(

(
n−k+n

n

)
) =

−σ2(c) + ν2(
(
c2h+c2h+1+L

c2h

)
) = −σ2(c) + ν2(

(
3c
c

)
) = σ2(c) − σ2(3c) if L < 2h, which

we are assuming.

There are two cases. If d = d(u), the first case is d ≥ n−k−2ν2(n−k) = c2h−2h =

(c−1)2h, and the second case is when n−k−d > 2h. Since 2h ∈ [n−k] and 2h > L,

it follows that ν2(
(
n−k−2h+n

n

)
) = ν2(

(
n−k+n

n

)
), and if n− k − 2h ≤ d ≤ n− k then

ν2(
(
d+n
n

)
) ≥ ν2(

(
n−k+n

n

)
). But w(u) ≤ n−k, so ν2(u) = ν2(Λu) ≤ n−k with equality

if and only if u = u′ (cf. [2, Lemma 2]). Hence for this case ν2(tu) > ν2(tu′) if

u 6= u′.

Next consider the other case, where n − k − d > 2h. By [5, Corollary A.1], we

have n−k−ν2(u) ≥ (n−k−d)/2 > 2h−1, so if 2h−1 ≥ ν2(
(
3c
c

)
) then n−k−ν2(u) >

ν2(
(
n−k+n
n−k

)
) = ν2(

(
3c
c

)
).

Hence the term when u = u′ dominates the sum (i.e., has smallest 2-adic value),

and ν2(B
(−k)
n−k ) = ν2((n − k)!tu′) = −σ2(c) + ν2(

(
3c
c

)
), which implies by (2.6) (cf.

(A.2)) that ν2(S(n, k)) = ν2(
(
n
k

)
) +ν2(B

(−k)
n−k ) = σ2(k)−σ2(n) +σ2(n−k)−σ2(c) +

ν2(
(
3c
c

)
) = σ2(c) + σ2(L) − (σ2(c) + σ2(L)) + 2σ2(c) − σ2(3c) = 2σ2(c) − σ2(3c) (if

2h > L and 2h−1 ≥ ν2(
(
3c
c

)
) = 2σ2(c)− σ2(3c)).
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Theorem 13 in fact can be generalized to the following extension of Theorem 4(a),

whose proof is entirely similar, and will be omitted.

Theorem 14. Suppose that the hypotheses of Theorem 4(a) are satisfied and 0 ≤
L < 2h. Then the conclusions hold if S(c2h, b2h) is replaced by S(c2h +L, b2h +L).

We have that

lim
h→∞

ν2(S(c2h + L, b2h + L)) (3.4)

exists and is independent of L, and is attained if 2h−1+ν2(c−b) ≥ ν2(
(
2c−b
c

)
).

Remark 6. The original conjecture claimed that ν2(S(c2h+1 + L, c2h + L)) =

ν2(
(
3c
c

)
) = 2σ2(c) − σ2(3c) with c odd, 0 ≤ L ≤ 2h. It suggested that h ≥ 3 might

suffice but in fact, we need that h is sufficiently large. The case L = 2h follows from

Theorem 4(b), namely n = c2h+1 + 2h = (2c+ 1)2h and k = c2h + 2h = (c+ 1)2h.

Since c is odd, 2c + 1 is odd and c + 1 is even, so by Theorem 4(b), we have

ν2(S(n, k)) = σ2(c) − σ2(2c) + ν2(
(
4c+2−c−2

c

)
) = ν2(

(
3c
c

)
) if 2h−1 > ν2(

(
3c
c

)
) Note

that the 2-adic order is zero if and only if c is Fibbinary.

In 2014 Davis [9, Theorems 1.1, 1.2, and Proposition 3.1] proved results similar

to Theorems 13 and 14 in greater generality since they hold for any odd prime p

when c ≡ b mod (p− 1) and allow different additive terms in (3.4). However, he did

not provide a good estimate for when the limiting value is achieved.

3.2. The Exact p -Adic Order

In this section we generalize some of the results for odd primes p, although they

may apply to p = 2 as well. Much of the terminology is explained in Section A, and

many of the proofs follow directly from the results in that section.

Theorem 15. Let p be an odd prime. Assume that νp(k) ≤ νp(n) and r = (n −
k)/(p− 1) ∈ N. Then the following are equivalent:

(1) S(n, k) is an AMZC;

(2) S(n+ 1, k + 1) is an SAMZC;

(3) νp(
(
r+n
n

)
) = σp(n− k)/(p− 1)−M , where M is the maximum pole of

B
(−k)
n−k (x);

(4) νp(τu) = −M , where up−1 = r; cf. Section A.3.

Furthermore, if these conditions hold then νp(S(n+ 1, k + 1)) = νp(S(n, k)) =

(σp(k)− σp(n))/(p− 1) + νp(
(
r+n
n

)
).

The proof follows immediately from Theorem 32, where the partition u′ concen-

trated in place p − 1 with u′p−1 = r − 1 is eliminated from consideration by the
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assumption that νp(k) ≤ νp(n). If νp(k) > νp(n), then νp(k) > 0 and νp(k− 1) = 0,

so we can replace (n, k) by (n − 1, k − 1) and M by M ′, the maximum pole of

B
−(k−1)
n−k (x) in Theorem 15.

For p = 2 there are small modifications: there are now 3 canonical partitions (cf.

Theorem 33), but the one with u1 = n− k− 1 has weight less than n− k, so is not

involved in B
(−k)
n−k (1), and is also ruled out by the hypothesis that ν2(k) ≤ ν2(n). We

then have equivalent conditions (1) and (2), and if they hold, then the Amdeberhan

equality (cf. Remark 3) holds. The other analysis can be changed to reflect that

there are now two possible candidate partitions u and u′ with u1 = n− k and with

u′1 = n− k − 3 and u′3 = 1, exactly one of which must work for an AMZC.

Remark 7. The preceding Theorem 15 contains some very general results that

apply to our cases. In particular, the last formula gives a very simple value for

νp(S(n, k)), which does not depend on the maximum pole of any higher order

Bernoulli polynomials, which may be difficult to calculate. Of course, the AMZC

and SAMZC implicitly involve the maximum poles, but the binomial coefficient

encodes that, and demonstrates precisely how we have improved the MZ estimate.

The situation is similar for the SMZ estimate.

Proof of Theorem 15. We use Theorem 32, with n := n − k and l := −k. Then, if

M is the maximum pole of B
(−k)
n−k (x), the assumption that νp(k) ≤ νp(n) translates

to νp(l) ≤ νp(n), so the partition u with up−1 = r is the only possible candidate for

νp((n−k)!tu) = −M , among all partitions u with w(u) ≤ n−k. Thus, νp(B
(−k)
n−k ) =

−M if and only if νp(τu) = −M , if and only if νp(B
(−k)
n−k (1)) = −M . The first of

these equalities defines S(n, k) is a AMZC, and the last equality defines S(n+1, k+1)

is an SAMZC. Since τu = (n− k)!
(
l−(n−k)−1

d

)
/pr, we have νp(τu) = (n− k−σp(n−

k))/(p−1)+νp(
(
n+r
n

)
)−r = −σp(n−k)/(p−1)+νp(

(
n+r
n

)
), so the middle equality

says that νp(τu) = −M , i.e., that is the unique candidate for the maximum pole.

Thus, conditions (1)–(4) are equivalent. If we now assume that they hold, then

νp(B
(−k)
n−k ) = νp(B

(−(k+1)+1)
n−k (1)) = −M , and νp(S(n, k)) = (σp(k) − σp(n))/(p −

1) + σp(n− k)/(p− 1)−M = (σp(k)− σp(n))/(p− 1) + νp(
(
n+r
n

)
).

The nice thing about this formula for νp(S(n, k)) is that it does not involve any a

priori value of the maximum pole. Of course, it is only valid if we have the conditions

(1)–(4), e.g., if S(n, k) is an AMZC, in addition to p− 1 | n− k and νp(k) ≤ νp(n).

We have a similar formula for p = 2 based on the definitions and analysis in

[5]. The situation is slightly more complicated, because for p = 2 there are three

canonical partitions, and one of which is ruled out by the assumption that ν2(k) ≤
ν2(n).

Theorem 16. For p = 2, assume that ν2(k) ≤ ν2(n). Then the following are equiv-

alent:
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(1) S(n, k) is an AMZC;

(2) S(n+ 1, k + 1) is an SAMZC;

(3) ν2(
(
n+n−k

n

)
) = σ2(n − k) −M or ν2(

(
n+n−k−2

n

)
) = σ2(n − k) − (M + 1) and

n−k is odd, where the or is exclusive and M is the maximum pole of B
(−k)
n−k (x);

(4) If u1 = n− k and u′1 = n− k − 3, u′3 = 1 with n− k odd, then ν2(τu) = −M
or ν2(τu′) = −M , again with exclusive or.

Furthermore, if these conditions hold then ν2(S(n, k)) = ν2(S(n+ 1, k + 1)). If

ν2(τu) = −M , then ν2(S(n, k)) = σ2(k)− σ2(n) + ν2(
(
n+n−k

n

)
). If ν2(τu′) = −M

then ν2(S(n, k)) = σ2(k)− σ2(n) + ν2(
(
n+n−k−2

n

)
)− 1.

The proof of this theorem follows the same pattern as the previous one, with the

additional complication that even after eliminating the partition u1 = n − k − 1

by the assumption that ν2(k) ≤ ν2(n), we are still left with two partitions, exactly

one of which gives the maximum pole, and both having weight n− k. The one that

works determines ν2(S(n, k)). The 2-adic values differ by one.

Remark 8. For any prime p, if νp(k) > νp(n) then νp(k − 1) = 0 ≤ νp(n − 1), so

we can apply Theorems 15 and 16, with (n, k) replaced by (n− 1, k − 1).

The main theorems in this section follow from Theorem 15. Our primary task

is showing that the hypotheses of Theorem 15 are satisfied. We define the least

positive residue k′ of k mod (p− 1) by 1 ≤ k′ ≤ p− 1 and k ≡ k′ mod (p− 1).

Theorem 17. Let n = cph where c =
∑
i≥0 cip

i is the base p expansion of c. Let k′

be the least positive residue of k mod (p− 1). Assume that 0 < k ≤ min{c0, k′}ph.

(a) If σp(n) ≥ k′ and n′ is the smallest segment of (the base p expansion of) n

with σp(n
′) = k′, then the maximum pole B

(−k)
n−k (x) equals σp(n

′ − k)/(p− 1)

and the almost minimum zero estimate is νp(S(n, k)) ≥ (σp(k)− k′)/(p− 1).

(b) If n ≡ k mod (p− 1), then S(n, k) is an AMZC and νp(S(n, k)) = (σp(k) −
k′)/(p− 1).

Note that the estimate depends only on k and is independent of n.

Corollary 4. Suppose that ph | n and 0 < k ≤ ph. If p− 1 | n− k then S(n, k) is

an AMZC and νp(S(n, k)) = (σp(k)− k′)/(p− 1) = b(σp(k)− 1)/(p− 1)c, using the

floor function.

Remark 9. Theorem 17 generalizes the case with 1 ≤ c ≤ p− 1, which is an MZC

as it is given in Theorem 8; cf. [4, Theorem 2.2]. It also generalizes previous results,

e.g., the p = 2 case; cf. Theorem 2 and [5, Theorem 3.4 (i) and Thereom 3.5
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(b)], which is an AMZC. Apparently, the first result for odd primes was given

in Theorem 7 in 2001; cf. [11, Theorem 1], which assumes that n rather than

n − k is a multiple of p − 1, and also that k/p is not an odd integer, and gives an

exact value when n and n − k are divisible by p − 1. Theorem 17 agrees with the

result, moreover its part (b) provides the exact value of νp(S(n, k)) for all values

of h ≥ logp(k/c0) if p− 1 | n− k. If p− 1 | n then σp(n) ≥ k′, so Theorem 17 fully

generalizes and extends Theorem 7 for all primes. Note also that if n ≡ k mod

(p− 1) then σp(k) ≡ σp(n) mod (p− 1), so that σp(n) ≥ k′, i.e., that hypothesis of

part (b) implies the hypothesis of part (a).

Proof of Theorem 17. The proof follows easily from the material in maximum poles

and the Kimura N -function in the Appendix, and from Theorem 15. First prove

part (a). Note that since n′ is the bottom segment of the base p representation of

n with σp(n
′) = k′, we see that n′ is a generalization of the Kimura N -function,

namely if p− 1 | k then n′ = N(n; p).

Let N1 = N(n′− k; p), N2 = N(n′− k−N1; p), . . . , NM = N(n′− k−N1− · · · −
NM−1; p). Then

∑
1≤i≤M Ni = n′ − k, and σp(Ni) = p − 1 and

∑
σp(Ni) has no

base p carries. This gives M(p − 1) = σp(n
′ − k), i.e., M = σp(n

′ − k)/(p − 1).

If i < M , all p-powers in Ni are less than ph, so n + Ni/(p − 1) has no base p

carries. On the other hand, since σp(n
′) ≤ p− 1, it follows that νp(NM ) < h. But

NM + NM/(p − 1) has only a single base p carry, occurring in the lowest p-power

of NM . Hence n + NM/(p − 1) has no base p carry, and thus n + (n′ − k)/(p − 1)

has no base p carry.

On the other hand, if N is a segment of n−k−(n′−k) = n−n′, then N+N/(p−1)

has a base p carry. But N is a segment of n, so n + N/(p − 1) has a base p carry.

Thus N1, N2, . . . , NM is the (longest) Kimura chain, and M is the maximum pole

of B
(−k)
n−k (x).

The AMZ estimate is νp(S(n, k)) ≥ (σp(k)−σp(n))/(p−1)+(σp(n−k)−σp(n′−
k))/(p − 1) = (σp(k) − σp(n) + σp(n − n′))/(p − 1) = (σp(k) − σp(n′)/(p − 1) =

(σp(k)− k′)/(p− 1).

For part (b), since k ≤ c0p
h, we have νp(k) ≤ νp(n) = h. To finish the proof,

by Theorem 15, we have only to show that νp(
(
n+r
r

)
) = σp(n − k)/(p − 1) −M =

(σp(n− k)− σp(n′ − k))/(p− 1) = σp(n− n′)/(p− 1) = (σp(n)− k′)/(p− 1).

Since n + r = n + (n − k)/(p − 1) = n + (n − n′)/(p − 1) + (n′ − k)/(p − 1),

and n + (n′ − k)/(p − 1) has no base p carries, it suffices to consider n + (n −
n′)/(p− 1) = n− n′ + (n− n′)/(p− 1) + n′. Since the number of base p carries for

n− n′ + (n− n′)/(p− 1) is σp(n− n′)/(p− 1), it follows that the number of carries

is σp(n − n′)/(p − 1) = (σp(n) − k′)/(p − 1) = νp(
(
n+r
n

)
), so S(n, k) is an AMZC

and the estimate in (a) is sharp.

Here are some easy consequences of Theorem 17 and some general examples.
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Corollary 5. Suppose that S(n, k) satisfies all the hypotheses of Theorem 17. Then

p | S(n, k) if and only if σp(k) > p− 1.

Corollary 6. Let 0 < k ≤ p − 1 and suppose that p | n and p− 1 | n− k. Then

p - S(n, k).

Proof of Corollary 5. We have that νp(S(n, k)) = (σp(k)− k′)/(p− 1) where k′ is

the least positive residue of k, i.e., the least positive residue of σp(k), and

1 ≤ k′ ≤ p− 1. Observe that νp(S(n, k)) = 0 if and only if σp(k) = k′ and

1 ≤ k′ ≤ p− 1.

Proof of Corollary 6. It is easy to see that the hypotheses of the Theorem 17 are

satisfied. Since k′ = k = σp(k), the result is immediate.

Example 1. We illustrate the use of Theorem 17 to calculate νp(S(n, k)) with p =

3, c = 17 = (122)3, h = 5, n = 17×35 = (12200000)3 = 4131, k = 241 = (22221)3.

In this case c0 = 2 ≥ k′ = 1 (and n′ = 243 = (100000)3 and M = 1 in the proof of

Theorem 17). We get that ν3(S(4131, 241)) = (σ3(241)−1)/(3−1) = (9−1)/2 = 4.

Another example determines νp(S(n, k)) with p = 5, c = 46 = (141)5, h = 4,

n = 46×54 = (1410000)5 = 28750, k = 622 = (4442)5. In this case c0 = 1 ≤
k′ = 2 (and n′ = 3750 = (110000)5 and M = 1 in the proof). It follows that

ν5(S(28750, 622)) = (σ5(622)− 2)/(5− 1) = (14− 2)/4 = 3.

Remark 10. Observe that the condition n ≡ k mod (p− 1) in part (b) of

Theorem 17 is equivalent to σp(n) = σp(c) ≡ σp(k) mod (p− 1). We also note

that the function σp(k) mod (p− 1) is periodic in k with period p − 1, since

k ≡ σp(k) mod (p− 1). If n ≡ k mod (p− 1) then all values of the argument k sat-

isfying this equivalence are in the form k+t(p−1) with an integer t; thus k′ remains

the same for all potential cases of k, since k′ ≡ k ≡ σp(k) ≡ σp(n) mod (p− 1). It

follows that in the range 0 < k ≤ min{c0, k′}ph with h sufficiently large, there is

about a fraction
1

p− 1

of cases covered by Theorem 17 according to Corollary 7.

Corollary 7. With a fixed c and the notations of Theorem 17, if n ≡ k mod (p− 1),

0 6= c0 ≡ c mod p, k′ is the least positive residue of k mod (p− 1) (which is the least

positive residue of n mod (p− 1) according to Remark 10; thus, it is completely

predetermined by n), and m = min{c0, k′}, then we have

A =

⌊
mph − k′

p− 1

⌋
+ 1

values of k in the range 0 < k ≤ mph satisfying the conditions of the theorem. It

implies that limh→∞A/(mph) = 1/(p− 1).
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Remark 11. We note that it is easy to test if we have an MZC provided that

n ≡ k mod (p− 1), k ≤ n, which is equivalent to r = (n− k)/(p− 1) ∈ N. Adelberg

proved in [4, (iii) of Theorem 2.1] that S(n, k) is an MZC if and only if p -
(
n+r
r

)
. In

this case, by definition, we can determine νp(S(n, k)) without any direct calculation

with Stirling numbers since νp(S(n, k)) = (σp(k) − σp(n))/(p − 1). For the SMZC

we have the condition that p -
(
n−1+r

r

)
, and then νp(S(n, k)) = (σp(k− 1)− σp(n−

1))/(p − 1); cf. [5, inequality (1.2) and Corollary 3.1] for the case of p = 2 and it

holds for any odd prime, too.

The situation is similar for the AMZC and SAMZC conditions, although the

non-trivial calculation of the maximum pole M is required; cf. Theorem 15. With

r = (n− k)/(p− 1) ∈ N, if we add the condition that νp(k) ≤ νp(n) then we have an

AMZC if and only if νp
((
n+r
r

))
= σp(n− k)/(p− 1)−M where M is the maximum

pole of B
(−k)
n−k (x). Then, once M is determined, but without any calculations with

S(n, k), we obtain that νp(S(n, k)) = νp
((
n
k

))
−M = (σp(k) − σp(n))/(p − 1) +

νp(
(
n+r
r

)
). In a similar fashion, with r = (n − k)/(p − 1) ∈ N, if we add the

condition that νp(n) < νp(k) then we have an SAMZC if and only if νp
((
n−1+r

r

))
=

σp(n− k)/(p− 1)−M ′ where M ′ is the maximum pole of B
(−k+1)
n−k (x). Once M ′ is

determined, but without any calculations with S(n, k), we obtain that νp(S(n, k)) =

νp(
(
n−1
k−1
)
)−M ′ = (σp(k − 1)− σp(n− 1))/(p− 1) + νp(

(
n−1+r

r

)
).

Example 2. To see the relevance of the condition n ≡ k mod (p− 1), we tested

some examples in which we can determine whether S(n, k) is an AMZC or SAMZC,

although it requires the exact calculation of νp(S(n, k)) and the corresponding max-

imum pole for establishing these facts.

For the cases with νp(n) < νp(k) and p− 1 - n− k we found that ν3(S(100, 45)) =

2, ν5(S(301, 75)) = 2 and ν7(S(272, 98)) = 1 and they are SAMZ cases. We observed

in our examples that νp(n) = 0.

For νp(k) < νp(n), for the cases we considered, we observed that the condition

n ≡ k mod (p− 1) was always true if S(n, k) is an AMZC. It is an interesting open

question whether this is always true.

Remark 12. Theorem 17 can be further generalized to give the following theorem.

This theorem is more general, since it dispenses with the condition that k ≤ c0p
h,

and in part (b) offers an alternative test to show that S(n, k) is an AMZC without

apriori calculation for the maximum pole M . This theorem is stronger than Theo-

rem 17, and the hypotheses are more germane to the conclusion. It retains only the

hypotheses that νp(k) ≤ νp(n) and p− 1 | n− k. Theorem 17 is the special case of

this theorem where B = n′.

We need the notion of segments; cf. Definition 1.

Theorem 18. Let B be a bottom segment of n such that 0 < k ≤ B. Suppose that

p− 1 | B − k and p -
(
n+(B−k)/(p−1)

n

)
. Then if M is the maximum pole of B

(−k)
n−k (x),

we have



INTEGERS: 22 (2022) 20

(a) M = σp(B − k)/(p − 1), and the first occurrence of this pole in the higher

order Bernoulli polynomial is in degree n− k − (B − k) = degree n−B;

(b) furthermore, if p− 1 | n− k then S(n, k) is an AMZC and νp(S(n, k)) =

(σp(k)− σp(B))/(p− 1).

Proof. The proof is essentially identical to that of Theorem 17, with the segment n′

replaced by B. The additional information about the first occurrence of the pole of

order M being in degree n−B follows from the general theory of maximum poles,

namely if N1, . . . , NM is the (longest) Kimura chain, then the first occurrence of

the maximal pole is in degree n− k −
∑
Ni = n− k − (B − k) = n−B.

For part (b), the hypothesis guarantees that S(B, k) is an MZC, which implies

that νp(k) ≤ νp(B) ≤ νp(n) by Theorem 9. The proof proceeds as before, using

the AMZC criterion in Theorem 15.

Example 3. We illustrate the use of Theorem 18 with p = 5, n = 2900 = (43100)5,

k = 348 = (2343)5, B = 400 = (3100)5, B − k = 52 = (202)5. By part (b) we

get that ν5(S(2900, 348)) = (σ5(348)− σ5(400))/4 = 2. Here the maximum pole is

M = σ5(52)/4 = 1 by part (a).

The following theorem is essentially a restatement of Theorem 18 and requires

no additional proof. It is stated as a separate theorem to indicate that it involves

an invariance property of the AMZC, and is parallel to results in [5] for the prime

p = 2. The assumption that S(B, k) is an MZC is equivalent to p -
(
B+(B−k)/(p−1)

B

)
.

Theorem 19. Let S(B, k) be an MZC. Let T be divisible by p−1 with all p-powers

in T at least as big as all p-powers in B, and assume that p -
(
T+B
B

)
, i.e., the sum

of the coefficients of T and B for exponent νp(T ) is less than p. Then S(T +B, k)

is AMZC and νp(S(T +B, k)) = (σp(k)− σp(B))/(p− 1).

Remark 13.

(1) If we do not assume that p−1 | T , then we still get the AMZ estimate νp(S(T+

B, k)) ≥ (σp(k)−σp(B))/(p−1), which is part (a) of all the Theorems 17 and

18.

(2) In Theorem 17, we let n = T +B and B = n′ and T = n−B. The case where

k′ ≤ c0, so B = k′ph, is Theorem 8 for a single digit. The case where k′ > c0
uses the criterion for AMZC.

3.3. Amdeberhan-type Identities

In [6, identity (2-4)] Amdeberhan et al. suggested the conjecture that ν2(S(2h +

1, k + 1)) = ν2(S(2h, k)) for 1 ≤ k ≤ 2h, which was proven by Hong et al. in

[14, Theorem 3.2]. Note that in this range S(2h, k) is an MZC. A much shorter
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proof with significant extensions to arbitrary MZ cases and all primes was given by

Adelberg in [4, Theorem 2.5], using the standard recursion for Stirling numbers of

the second kind.

Now we turn to the general study of

ν2(S(n+ 1, k + 1)) = ν2(S(n, k)), (3.5)

in order to establish conditions to guarantee the equality. Adelberg found that, as

given in the next theorem, the equality (3.5) is much more general than the original

conjecture.

Theorem 20. For any prime p, S(n, k) is an MZC if and only if S(n+1, k+1) is an

SMZC. If S(n, k) is an MZC and/or S(n+1, k+1) is an SMZC, then νp(S(n, k)) =

νp(S(n+ 1, k + 1)) = (σp(k)− σp(n))/(p− 1).

In fact in [5] the SMZC was defined for p = 2, and in the current paper is defined

for general p, and the criteria for these cases also show that for any prime p, if

S(n, k) is an MZC then S(n + 1, k + 1) is an SMZC (actually if and only if). The

proofs do not involve any Stirling number recursions, but only involve the criteria.

Note that the hypotheses that p− 1 | n− k and νp(k) ≤ νp(n) are implied by the

assumption that S(n, k) is an MZC.

In this paper, the following theorem follows immediately from the cited theorems.

Theorem 21. Let p be any prime (odd or even). Assume that νp(k) ≤ νp(n) and

p− 1 | n− k. Then S(n, k) is an AMZC if and only if S(n+1, k+1) is an SAMZC,

and if S(n, k) is an AMZC then νp(S(n + 1, k + 1)) = νp(S(n, k)). Similarly, if

νp(k − 1) ≤ νp(n− 1) and p− 1 | n− k we get that S(n − 1, k − 1) is an AMZC

if and only if S(n, k) is an SAMZC, and if S(n − 1, k − 1) is an AMZC then

νp(S(n, k)) = νp(S(n− 1, k − 1)).

This establishes the Amdeberhan-type result, with a partial converse.

Remark 14. In particular, to indicate how far we have generalized the original

Amdeberhan conjecture, if 1 ≤ k ≤ 2h and c ≥ 1, we know that S(c2h, k) is

an AMZC and ν2(S(c2h, k)) = σ2(k) − 1. Since clearly ν2(k) ≤ ν2(c2h), we have

S(c2h+1, k+1) is an SAMZC and ν2(S(c2h+1, k+1)) = ν2(S(c2h, k)) = σ2(k)−1.

Furthermore, this is all done with no Stirling number identities or inductions!

Corollary 8. Let p be an odd prime. If (n, k) satisfies all the hypotheses of The-

orems 17, 18, or 19, then S(n + 1, k + 1) is SAMZC and νp(S(n + 1, k + 1)) =

νp(S(n, k)).

To better understand the connection between the Amdeberhan conjecture and its

generalizations above, we consider two formulas νp(S(n, k)) = νp(
(
n
k

)
) + νp(B

(−k)
n−k )

and νp(S(n, k)) = νp(
(
n−1
k−1
)
) + νp(B

(−k+1)
n−k (1)) that follow from formula (A.2).
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If we replace (n, k) by (n + 1, k + 1) in the second equation of the preceding

paragraph and compare the two equations we get the following theorem.

Theorem 22. Let n ≥ k and let p be prime. Then νp(S(n+ 1, k + 1)) = νp(S(n, k))

if and only if νp(B
(−k)
n−k ) = νp(B

(−k)
n−k (1)).

We close this section by illustrating how the last part of Theorem 22 can be

used to get the Amdeberhan-type identity in a case where ν2(k) > ν2(n). We prove

the following theorem, which is a strengthening of [5, Theorem 2.4], which was an

improvement of [17, Theorem 6]. It should be noted that this theorem is dual to

Theorem 31, which involves the instances of [24, Theorems 1.1 and 1.2], which we

can prove by our methods.

Theorem 23. Let h, u, c ∈ N , with u ≤ 2h. Then if 0 < u < 2h, the SAMZ estimate

is ν2(S(c2h + u, 2h)) ≥ h− 1− ν2(u). Furthermore, the SAMZ cases are u even and

u ≤ 2h−1, and u = 1, and u = 1 + 2h−1, and for these cases S(c2h + u− 1, 2h − 1)

is an AMZC and ν2(S(c2h + u, 2h)) = ν2(S(c2h + u− 1, 2h − 1)) = h− 1− ν2(u).

Proof. All but the last assertions were proven in [5]. If n = c2h+u with 0 < u < 2h

and k = 2h, then ν2(k) = h > ν2(n) = ν2(u). Hence, we can use the remark follow-

ing Theorem 15 to deduce the conclusion.

3.4. A Statistically Minded Conjecture and Exceptions

Inspired by [5, Theorem 2.6] and based on empirical evidence, we claim the following

somewhat surprising conjecture.

Conjecture 2. For c ∈ Z+ we have

lim
h→∞

1

c2h

∣∣∣∣{k : 0 ≤ k ≤ c2h, ν2(S(c2h, k)) = σ2(k)− σ2(c) + ν2

((
c2h+1 − k

c2h

))}∣∣∣∣
= 1. (3.6)

This conjecture states that, statistically speaking, we can calculate the exact

value of the 2-adic order of S(c2h, k) for almost all k. Note that Theorem 12

provides a coverage about 50% of all k values since a is supposed to be in the range

1 ≤ a ≤ 2h−1.

3.5. A Related Result

In this subsection we state and proof another related result and make a conjecture

for p = 2.
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Theorem 24. Let a, b, c, h ∈ N with c > b ≥ 1 and 1 ≤ a ≤ 2h−1 − 1. We set

f(b, c) = σ2(b)− σ2(c) + ν2

((
2c−b−1

c

))
. Then

ν2(S(c2h + 1, b2h + a+ 1)) = ν2(S(c2h, b2h + a)) = σ2(a) + f(b, c), (3.7)

and if 3 ≤ a ≤ 2h−1 then

ν2(S(c2h + 2, b2h + a)){
= σ2(a) + f(b, c) + ν2

((
a+1
2

))
− 1, if a ≡ 0, 1, 2 mod 4,

≥ σ2(a) + f(b, c), if a ≡ 3 mod 4,
(3.8)

if 2h−2 ≥ ν2

((
2c−b−1

c

))
. If b ≥ 1 is odd then (3.7) simplifies to σ2(a) + ν2(c − b),

while the first case of (3.8) simplifies to σ2(a) + ν2(c− b) + ν2
((
a+1
2

))
− 1.

Numerical experimentation suggests the following conjecture.

Conjecture 3. If 3 ≤ a ≤ 2h−1 and a ≡ 3 mod 4, then ν2(S(c2h + 2, b2h + a)) =

σ2(a) + f(b, c) + ν2
((
a+1
2

))
− 1.

Proof of Theorem 24. First we prove identity (3.7). By the standard recurrence

relation for the Stirling numbers we have

S(c2h + 1, b2h + a+ 1) = S(c2h, b2h + a) + (b2h + a+ 1)S(c2h, b2h + a+ 1).

We have ν2(S(c2h, b2h + a)) = σ2(a) + f(b, c) = σ2(a+ 1)− 1 + ν2(a+ 1) + f(b, c) if

1 ≤ a ≤ 2h−1 and ν2((b2h+a+1)S(c2h, b2h+a+1)) = ν2(a+1)+σ2(a+1)+f(b, c)

if 1 ≤ a + 1 ≤ 2h−1, i.e., 1 ≤ a ≤ 2h−1 − 1 combined, by Theorem 12. Therefore,

ν2(S(c2h + 1, b2h + a + 1)) = ν2(S(c2h, b2h + a)) = σ2(a) + f(b, c) which also

generalizes [14, Theorem 3.2] that proved a conjecture by Amdeberhan et al.; cf.

[6, identity (2-4)].

To prove (3.8), we use the standard recurrence relation again and have

S(c2h + 2, b2h + a) = S(c2h + 1, b2h + a− 1) + (b2h + a)S(c2h + 1, b2h + a). (3.9)

We apply ν2(b2h + a) = ν2(a) and (3.7) for ν2(S(c2h + 1, b2h + a − 1)) with 1 ≤
a − 2 ≤ 2h−1 − 1 and ν2(S(c2h, b2h + a)) with 1 ≤ a − 1 ≤ 2h−1 − 1, i.e., with

3 ≤ a ≤ 2h−1 combined. We have three cases.

For a even we get that ν2(S(c2h + 1, b2h + a − 1)) = σ2(a − 2) + f(b, c) =

σ2(a−1)−1+ν2(a−1)+f(b, c) = σ2(a−1)+f(b, c)−1 < ν2(S(c2h+1, b2h+a) for

the two terms in Equation (3.9). In this case, by (3.7), ν2(S(c2h+1, b2h+a−1)) =

ν2(S(c2h, b2h + a− 2)) = σ2(a− 2) + f(b, c) = σ2(a− 1)− 1 + ν2(a− 1) + f(b, c) =

σ2(a)− 1 + ν2(a)− 1 + ν2(a− 1) + f(b, c) = σ2(a) + ν2(
(
a+1
2

)
)− 1 + f(b, c).

In a similar fashion, if a ≡ 1 mod 4 then ν2(S(c2h + 1, b2h + a − 1)) = σ2(a −
2) + f(b, c) = σ2(a − 1) − 1 + ν2(a − 1) + f(b, c) ≥ σ2(a − 1) + f(b, c) + 1 >
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ν2(S(c2h + 1, b2h + a)) for the two terms in Equation (3.9). In this case, by (3.7),

ν2(S(c2h + 1, b2h + a)) = ν2(S(c2h, b2h + a− 1)) = σ2(a− 1) + f(b, c) = σ2(a)− 1 +

ν2(a) + f(b, c) = σ2(a) + ν2(
(
a+1
2

)
)− 1 + f(b, c).

If a ≡ 3 mod 4, then the two terms in (3.9) have the same 2-adic orders, so the

sum has greater value, i.e., ν2(S(c2h + 2, b2h + a)) ≥ ν2(S(c2h + 1, b2h + a)) + 1 =

σ2(a) + ν2(a) + f(b, c) = ν2(S(c2h, b2h + a)).

4. Main Results for s(n, k)

4.1. Preliminaries – Estimates and Cases

The in-depth study of p-adic evaluation of Stirling numbers of the first kind was

started by Lengyel in [20] who noticed the inherent and significant differences in

the p-adic behavior of the Stirling numbers of the first and second kinds.

Further progress has been made by Leonetti and Sanna [21], Komatsu and Young

[15], Adelberg [4, 5], and Qui and Hong [13, 24].

As an example of our approach, we illustrate it by consideration of the following

theorems.

Theorem 25 ([24, Theorem 1.2]). For arbitrary positive integers h and k such that

k ≤ 2h, we have ν2(s(2h + 1, k + 1)) = ν2(s(2h, k)).

Note that they also proved

Theorem 26 ([24, Corollary 1.3]). For arbitrary integers h and k such that h ≥ 2

and 2 ≤ k ≤ 2h−1 + 1, we have

ν2(s(2h, 2h − k)) =

{
h− 1− ν2(k), if 2 | k,
2h− 2− ν2(k − 1), if 2 - k.

Although with Adelberg’s technique we can prove only limited versions of The-

orems 25 and 26, our proofs are very short and transparent, and can provide the

inductive basis of more general proofs. They illustrate how the estimates and cases

can be used, and also demonstrate the limitations of our methods in dealing with

Stirling numbers of the first kind. The proofs in [24] are very long and involved,

with many inductions.

Our method for dealing with Stirling numbers of the first kind is entirely anal-

ogous to the method for dealing with Stirling numbers of the second kind, since

both depend entirely on the translation from higher order Bernoulli numbers and

polynomials to Stirling numbers.

The basic translation formulas for Stirling numbers of the first kind are

s(n, k) =

(
n− 1

k − 1

)
B

(n)
n−k (4.1)



INTEGERS: 22 (2022) 25

and the “shifted formula”

s(n, k) =

(
n

k

)
B

(n+1)
n−k (1). (4.2)

Comparison of formulas (4.1) and (4.2) for Stirling numbers of the first kind with

formulas (2.6) and (2.7) for Stirling numbers of the second kind, illustrates the

duality between the different types of Stirling numbers, which arises from the duality

between Stirling polynomials of the first and second kinds. This duality basically

reverses the roles of n and k, reverses inequalities, and interchanges sums and

differences. Essentially one interchanges the n and k, and replaces them by their

negatives. This will be further illustrated by the estimates and cases, and by the

applications.

Since most of our analysis of Stirling numbers of the first kind is almost the same

as for Stirling numbers of the second kind, we will state the results, with proofs only

when there are significant differences.

For a general prime p, Adelberg proved a series of interesting results in [4]. He

proved the MZ estimate νp(s(n, k)) ≥ (σp(k − 1) − σp(n − 1))/(p − 1). He showed

in [4, Theorem 3.1] that s(n, k) is an MZC if and only if the estimate is sharp,

which is in turn equivalent to p -
(
k−1
r

)
, where r = (n − k)/(p − 1) ∈ N. He also

proved in [4, Theorem 3.4] that if s(n, k) is an MZC then the Amdeberhan-type

result νp(s(n− 1, k − 1)) = νp(s(n, k)) holds.

For p = 2 Adelberg introduced the MZ, SMZ, AMZ, and SAMZ estimates (4.3)–

(4.6) for s(n, k) in [5, (3.7)–(3.10)], in respective order:

ν2(s(n, k)) ≥ σ2(k − 1)− σ2(n− 1), (4.3)

ν2(s(n, k)) ≥ σ2(k)− σ2(n), (4.4)

ν2(s(n, k)) ≥ σ2(k − 1)− σ2(n− 1) + #([n− k]− [k − 1]), (4.5)

and

ν2(s(n, k)) ≥ σ2(k)− σ2(n) + #([n− k]− [k]). (4.6)

Since for the higher order Bernoulli polynomial B
(n)
n−k(x), using the notations of

Section 5.3, we have s = n− (n− k)− 1 = k− 1, by Remark 16 the maximum pole

M = #([k − 1]
⋂

[n − k]), and similarly, the maximum pole of B
(n+1)
n−k (x) is M ′ =

#([k]
⋂

[n − k]), so we can reformulate the AMZ (almost minimum zero) estimate

and SAMZ (shifted almost minimum zero) estimate as ν2(s(n, k)) ≥ ν2(
(
n−1
k−1
)
)−M

and ν2(s(n, k)) ≥ ν2(
(
n
k

)
)−M ′, respectively.

If any of these estimates is sharp, we have a “case,” so again we have the cases

MZC, SMZC, AMZC, and SAMZC, with the same geometric interpretations.
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The reformulation can be taken to define the four estimates and cases for an

arbitrary prime p. Alternatively, one can use Definition 7 with n := n − k and

l := n. Since in [5] only p = 2 was considered, and the focus was on Stirling numbers

of the second kind, the estimates and cases were given for Stirling numbers of the

first kind only for p = 2, but there was no further development. Accordingly, we

will now generalize the estimates and cases (when the estimates are sharp) for all

primes p for Stirling numbers of the first kind.

For odd p, if M is the maximum pole of B
(n)
n−k(x) and M ′ is the maximum pole

of B
(n+1)
n−k (x), respectively; the MZ, SMZ, AMZ, and SAMZ estimates in respective

order are given in (4.7)–(4.10):

νp(s(n, k)) ≥ (σp(k − 1)− σp(n− 1))/(p− 1) (4.7)

νp(s(n, k)) ≥ (σp(k)− σp(n))/(p− 1) (4.8)

νp(s(n, k) ≥ (σp(k − 1)− σp(n− 1))/(p− 1) + (σp(n− k))/(p− 1)−M (4.9)

νp(s(n, k)) ≥ (σp(k)− σp(n))/(p− 1) + (σp(n− k))/(p− 1)−M ′. (4.10)

Observe that we have alternate formulations to the estimates (4.9) and (4.10),

namely νp(s(n, k)) ≥ νp(
(
n−1
k−1
)
) −M and νp(s(n, k)) ≥ νp(

(
n
k

)
) −M ′, respectively.

Also s(n, k) is an AMZC if and only if νp(B
(n)
n−k) = −M , and s(n, k) is an SAMZC

if and only if νp(B
(n+1)
n−k (1)) = −M ′.

Note that the AMZ estimate improves the MZ estimate if that estimate is not

sharp, and similarly the SAMZ estimate improves the SMZ estimate if that one

is not sharp. Also note that the shifted MZ estimate for s(n, k) is the same as

the MZ estimate for s(n + 1, k + 1), and similarly, the shifted AMZ estimate for

s(n, k) is the same as the AMZ estimate for s(n+ 1, k + 1), so s(n, k) is an SMZC

if and only if s(n + 1, k + 1) is an MZC, and if these cases hold, then νp(s(n +

1, k + 1)) = νp(s(n, k)), which is equivalent to νp(B
(n+1)
n−k ) = νp(B

(n+1)
n−k (1)). This

result considerably strengthens [4, Theorem 3.4], namely if we replace (n, k) by

(n − 1, k − 1), then we now have that if s(n, k) is an MZC then ν2(s(n, k)) =

ν2(s(n−1, k−1)) and s(n−1, k−1) is an SMZC, which we did not have previously.

In particular, we get the following improvement of [4, Theorem 3.2].

Theorem 27. Let 1 ≤ a ≤ p − 1 and k = aph and assume that p − 1 | n − a

and k ≤ n < kp. Then s(n, k) is an MZC and s(n − 1, k − 1) is an SMZC and

νp(s(n, k)) = νp(s(n − 1, k − 1)) = ((σp(k − 1) − σp(n − 1))/(p − 1), which is an

Amdeberhan-type result.
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Observe that according to inequalities (4.7) and (4.8), the theorem is the dual of

De Wannemacker’s theorem for Stirling numbers of the second kind as generalized

to all primes in [4, Theorem 2.2].

We can also easily show as before that if s(n, k) is an MZC then νp(n) ≤ νp(k),

while if s(n, k) is an SMZC then νp(k) ≤ νp(n). Finally, we will prove the following

theorem here, because the proof differs significantly from that of Theorem 9, which

is the corresponding result for Stirling numbers of the second kind.

Theorem 28. The AMZ and SAMZ estimates for s(n, k) are non-negative.

Proof. We give the proof for the SAMZ estimate. The AMZ estimate is similar.

If M ′ is the maximum pole of B
(n+1)
n−k (x) and N1, . . . , NM ′ is the (longest) Kimura

chain, then p -
(

k
Ni/(p−1)

)
for each i. If e = νp(Ni) and c is the coefficient of pe in

the base p expansion of Ni, then p − c is the coefficient of pe in Ni/(p − 1), and

p -
(

k
Ni/(p−1)

)
, so p − c ≤ ke, for all i, where ke is the coefficient of pe in k, i.e.,

c+ ke ≥ p. Hence Ni + k has a base p carry in place pe for each i. This (n− k) + k

has at least M ′ base p carries, so νp(
(
n

n−k
)
) ≥M ′, i.e., νp(

(
n
k

)
)−M ′ ≥ 0.

Corollary 9. If νp(s(n, k)) = 0, then s(n, k) is an MZC or an AMZC, and also an

SMZC or an SAMZC.

We turn now to the criteria for the cases, based on the partitions u, defined in

Section A.4.

Theorem 29 (criteria for the four cases for p = 2). The following hold:

(i) s(n, k) is an MZC if and only if 2 -
(
k−1
n−k
)
;

(ii) s(n, k) is an SMZC if and only if 2 -
(
k

n−k
)
, i.e., if and only if s(n+ 1, k + 1)

is an MZC;

(iii) s(n, k) is an AMZC if and only if precisely one of the following holds:

(a) ν2(
(
k−1
n−k
)
)) = σ2(n− k)−M , where M is the maximum pole of B

(n)
n−k(x)

(b) ν2(
(
k−1

n−k−1
)
) = σ2(n− k)−M − 1

(c) n− k is odd and ν2(
(
k−1

n−k−2
)
) = σ2(n− k)−M − 1;

(iv) s(n, k) is an SMZC if and only if precisely one of the following holds:

(a) ν2(
(
k

n−k
)
) = σ2(n−k)−M ′, where M ′ is the maximum pole of B

(n+1)
n−k (x)

(b) n− k is odd and ν2(
(

k
n−k−2

)
) = σ2(n− k)−M ′ − 1.

Furthermore, if ν2(n+1) ≤ ν2(k+1) then s(n, k) is an SAMZC if and only if s(n+

1, k+ 1) is an AMZC, and if these cases hold then ν2(s(n, k)) = ν2(s(n+ 1, k+ 1)).
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Up to the last statement the proof precisely follows the pattern of [5, Theorem 3.3]

where the criteria are proved for Stirling numbers of the second kind. The last

statement follows from Theorem 33(c), by setting its parameters l and n to l := n

and n := n− k. The basis of the proof is that only the three canonical partitions

u1 = n− k, u′1 = n− k − 1, and u′′1 = n− k − 3, u′′3 = 1 have to be considered, and

the partition u′ is ruled out for B
(n)
n−k(1) by the shift, and is also ruled out for B

(n+1)
n−k

by the assumptions about ν2(n+ 1), as in Theorem 33(c).

Remark 15. We can replace the valuation conditions for the binomial coefficients

in (a), (b), (c) by assumptions on ν2(n− k) and ν2(n− k − 1) and the assumption

that the binomial coefficients have no unforced borrows, which is analogous to the

assumption of no unforced carries that we made in [5]. (An unforced borrow is one

that is a consequence of a previous borrow.)

The situation for p odd is almost identical to p = 2, except there is no analog of

the partition u′′. Once again, we can prove it in similar fashion to previous proofs,

or deduce it from Theorem 32. Assume r = (n− k)/(p− 1) ∈ N, and M and M ′ are

the maximum poles of B
(n)
n−k(x) and B

(n+1)
n−k (x), respectively, and u is the partition

with up−1 = r.

Theorem 30. Let p be an odd prime. Then

(a) s(n, k) is an MZC if and only if p -
(
k−1
r

)
.

(b) s(n, k) is an SMZC if and only if p -
(
k
r

)
.

(c) If l := n and n := n − k, then the assumption νp(l) ≤ νp(n) of Theorem 32

says that νp(n) ≤ νp(k), so if this holds then s(n − 1, k − 1) is an SAMZC

if and only if s(n, k) is an AMZC, and if these cases hold then νp(s(n, k)) =

νp(s(n− 1, k − 1)).

(d) With the same notations as in (c), if instead νp(l) > ν(n) we have νp(k) <

νp(n), then we can replace (n, k) by (n + 1, k + 1) and we get s(n, k) is an

SAMZC if and only if s(n + 1, k + 1) is an AMZC, and if these cases hold,

then νp(s(n, k)) = νp(s(n+ 1, k + 1)).

Note the Amdeberhan-type identities for Stirling numbers of the first kind.

4.2. Applications

As an example of the power and limitation of our methods, we turn to the remark-

able paper by Qui and Hong [24] which derives formulas for ν2(s(n, k)) if n = 2h and

0 < k ≤ n. This paper is quite long and involved, and quite remarkable for its skill

and imagination. Our methods are limited since for the Stirling numbers of the first

kind s(n, k), we know that s = k − 1 for the MZ and AMZ estimates, while s = k
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for the SMZ and SAMZ estimates. Thus for p = 2, the only partitions that must

be considered for the AMZC are the three canonical partitions we have previously

considered for Stirling numbers of the second kind, while for the SAMZC, we have

just the two canonical partitions with weight n−k. Since s = n−(n−k)−1 = k−1

for the unshifted estimate and s = n − (n − k) = k for the shifted estimate, and

d = n−k, n−k−1, or n−k−2 for the canonical partitions, we see that an AMZC

can only occur if n − k − 2 ≤ k − 1, i.e., n ≤ 2k + 1. Similarly, an SAMZC can

only occur if n ≤ 2k + 2. Note that if the canonical partition with d = n − k − 2

gives the maximum pole, then n− k is odd. We have an easy proof of the following

theorem, which illustrates our method.

Theorem 31. For p = 2, if n = 2h, then s(n, k) is an SAMZC if and only if k is

even and 2h−1 ≤ k < 2h, or k = 2h−1, or k = 2h−1−1. There are no MZ or AMZ

cases if 0 < k < n. If k is even and 2h−1 ≤ k ≤ 2h, then ν2(s(n, k)) = h−ν2(k)−1.

If k = 2h − 1 or k = 2h−1 − 1 then ν2(s(n, k)) = h− 1 = h− 1− ν2(k). If s(n, k) is

an SAMZC then we have the Amdeberhan equation ν2(s(n+1, k+1)) = ν2(s(n, k)).

Proof. A simple computation shows that M , the maximum pole of B
(n)
n−k(x) is

#([k−1]
⋂

[n−k]) = 0 andM ′ is the maximum pole of B
(n+1)
n−k (x) = #([k]

⋂
[n−k]) =

1, since [k−1] is disjoint from [n−k] and [n−k]
⋂

[k] = {2ν2(k)}. Since ν2(
(
2h−1
k−1

)
) =

0, the AMZ estimate of s(n, k) is always the trivial estimate ν2(s(n, k)) ≥ 0. On

the other hand, it is easy to see that ν2(
(
n
k

)
) = h − ν2(k), and since M ′ = 1, the

SAMZ estimate is ν2(s(n, k)) ≥ h− ν2(k)−M ′ = h− ν2(k)− 1.

We noted above that if s(n, k) is any of the cases, then k ≥ n/2− 1 = 2h−1 − 1.

We first dispose of the odd cases. If k = 2h − 1 = n − 1, then we know that

ν2(s(n, k)) = ν2(n(n − 1)/2) = h − 1. Since 2 -
(
k

n−k
)
, this is an SMZC. Next if

k = 2h−1−1, then n−k = 2h−1 +1 > k. Thus, only the partition u′′ is viable, with

n−k−2 = 2h−1−1 = k, and the criterion for SAMZC is satisfied for this partition,

so s(n, 2h−1−1) is an SAMZC and ν2(s(n, k)) = ν2(
(
n
k

)
)−M ′ = ν2(

(
2h

2h−1−1
)
)−1 =

h− 1.

Next we consider the even cases 2h−1 ≤ k ≤ 2h. Since n + 1 is odd, we have

ν2(n + 1) ≤ ν2(k + 1), so we have only to consider the partitions u and u′′. Since

k is even, so is n − k, and ν2(k) = ν2(n − k), but for all other places, in base 2,

the ones of n and n− k are disjoint. It follows
(
k

n−k
)

has no unforced borrows, i.e.,

u satisfies the SAMZC criteria. Since k is even, so is n − k, so the partition u′′

does not give the maximum pole, which implies that s(n, k) is an SAMZC. Since

we showed above that the SAMZ estimate is ν2(s(n, k)) ≥ h − ν2(k) − 1, we have

ν2(s(n, k)) = h− ν2(k)− 1 for these cases.

If 2h−1 < k < 2h− 1 and k is odd then k and n− k differ in all places except the

unit place and n−k is now odd. It follows that the partitions u and u′′ both satisfy

the conditions of the criteria, which shows that s(n, k) is not an SAMZC (violates

unique partition satisfying the criteria).
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Finally, if s(n, k) is an SAMZC, since n+ 1 is odd, we have ν2(n+ 1) ≤ ν2(k+ 1)

and s(n + 1, k + 1) is an AMZC, and ν2(s(n, k)) = ν2(s(n+ 1, k + 1)) by Theo-

rem 30 (d).

Theorem 31 is another good example of the duality between Stirling numbers

of the first and second kinds. Theorem 23 asserts that if c, u, h > 0 and u < 2h

then S(c2h + u, 2h) is an SAMZC if and only if u even and u ≤ 2h−1, or u = 1, or

u = 1 + 2h−1, and in these cases ν2(S(c2h + u, 2h)) = h− 1− ν2(u). First observe

that c = 1 is sufficient for this result by an invariance property of SAMZ cases (cf.

[5, Theorem 3.5]). Then observe that if you interchange k and n, and replace k by

n − u, you get exactly the same SAMZ cases for S(2h + u, 2h) and s(2h, 2h − u),

with the same 2-adic values.
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the paper.
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A. Appendix – Basic Facts, Notations, Techniques, and Supplementary
Materials

In this section we collected some basic definitions (cf. [1, 2, 8, 12]) and techniques.

We assume that a, ai, b, B, k, l, n, ni, m,M, r, ri, s, T ∈ N unless otherwise indicated

and that p is a prime. We also define the cases and estimates for higher order

Bernoulli polynomials, and prove some fundamental theorems.

http://arXiv.org/pdf/math/0608328v1
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A.1. Base p Arithmetic, p -Adic Valuations, Binomial Coefficients

Let n =
∑m
i=0 nip

i, 0 ≤ ni ≤ p − 1, be the base p representation of n, where the

coefficients ni are the base p digits of n. We use the notation σp(n) =
∑m
i=0 ni for

the digit sum in the base p representation. The following elementary facts about

base p arithmetic are used often in this paper:

σp(a− 1) = σp(a)− 1 + (p− 1)νp(a) (A.1)

if a ∈ Z+.

By theorems of Legendre and Kummer we have νp(
(
a+b
a

)
) = (σp(a) − σp(a +

b) + σp(b))/(p − 1), which is the number of carries for the base p sum of a + b. In

particular, νp(
(
a+b
a

)
) = 0 happens if and only if ai + bi < p for all i.

Let r = n/(p− 1) =
∑
rip

i ∈ N with 0 ≤ ri ≤ p− 1. Then

(1) νp(n) = νp(r);

(2) r + n = pr, so if i = νp(n) then ri = p− ni;

(3) νp(
(
n+r
r

)
) = σp(n)/(p− 1);

(4) if T is a top segment (cf. Definition 1) of n such that p− 1 | T , and r =

T/(p− 1), then νp(
(
n+r
r

)
) = νp(

(
T+r
r

)
) = σp(T )/(p− 1).

Here in items (2) and (3) we used that r+n = (n+(np−n))/(p−1) = np/(p−1) =

pr and therefore, νp(
(
n+r
r

)
) = (σp(n)− σp(n+ r) + σp(r))/(p− 1) = σp(n)/(p− 1).

Incidentally, the use of (2) and (3) is critical for our method, since almost every-

thing in the approach is reduced to the p-adic valuation of binomial coefficients: we

express a Stirling number (of the first or second kind) as a product of a binomial

coefficient and a higher order Bernoulli number. The p-adic value of the Stirling

number is the sum of the p-adic values of these factors. We then express the higher

order Bernoulli number as a sum of terms that depend on partitions. The terms

are primarily products of binomial coefficients and factorials, so their values can be

calculated. We can get an estimate (lower bound) if we can estimate the values of

the terms, and we can get an exact value for the Stirling numbers if there is one

term which has least value, which can be calculated.

We need the notion of segments.

Definition 1. We often identify n with its base p expansion or representation,

n =
∑
nip

i, where the range can be taken from 0 up or from νp(n) up and the

digits ni satisfy 0 ≤ ni ≤ p− 1. A closed segment is a subsum for a ≤ i ≤ b. For a

general segment, we add a summand n
′

a−1p
a−1 and/or a summand n

′′

b+1p
b+1 where

n
′

a−1 < na−1 and n
′′

b+1 < nb+1. If a = 0 or equivalently, if a = νp(n), a segment

is called a bottom segment. These bottom segments can be closed or not, even in a

given context, but they do include the lowest term in the base p expansion.
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In the Kimura algorithm (cf. Definition 6) to find the maximum pole for B
(l)
n (x),

we consider (closed) bottom segments S of the base p expansion of n, and examine

N = N(n− S; p) which is the smallest non-zero segment of n− S which is divisible

by p − 1, and we take the smallest S such that p -
(

s
N/(p−1)

)
, where s = l − n− 1.

This segment will generally not be closed, since you proceed through the digits until

you get p− 1 as a digit sum.

Similarly, a top segment of n is a segment that includes the summand ntp
t where

t is the greatest exponent in the base p expansion of n. If B is a bottom segment

of n, then n − B = T is the (complementary) top segment, and T is closed if and

only if B is closed.

A.2. Stirling Numbers and Higher Order Bernoulli Numbers and
Polynomials

We now list the definitions of Stirling numbers, higher order Bernoulli polynomials

and numbers, and their relationships.

Definition 2. For n ∈ Z+, the Stirling numbers of the first kind s(n, k) are defined

by

(x)n = x(x− 1) · · · (x− n+ 1) =

n∑
k=0

(−1)n−ks(n, k)xk,

while the Stirling numbers of the second kind S(n, k) are defined by

xn =

n∑
k=0

S(n, k)(x)k.

Definition 3. The higher order Bernoulli polynomials B
(l)
n (x) are defined by their

exponential generating function(
t

et − 1

)l
etx =

∑
n≥0

B
(l)
n (x)

n!
tn,

and the higher order Bernoulli numbers B
(l)
n by B

(l)
n = B

(l)
n (0).

Note that B
(l)
n (x) is a monic rational polynomial of degree n. There is a recursion

(shift) formula B
(l)
n = (l/(l−n))B

(l+1)
n (1) which together with the standard formulas

for Stirling numbers (cf. [2, identity (13)], and [3, 5]) give

S(n, k) =

(
n

k

)
B

(−k)
n−k =

(
n− 1

k − 1

)
B

(−k+1)
n−k (1) (A.2)

and

s(n, k) =

(
n− 1

k − 1

)
B

(n)
n−k =

(
n

k

)
B

(n+1)
n−k (1). (A.3)



INTEGERS: 22 (2022) 34

A.3. Poles, Newton Polygons, and the Cases of Higher Order Bernoulli
Polynomials

Definition 4. If νp(a) = −M , we say that a has pole of order M . For any rational

polynomial f(x) we define the maximum pole of f(x) as the highest order pole of its

coefficients, which is the highest power of p in the denominator of any coefficient.

We use Newton polygons to convey information about the poles of a rational

polynomial. Here we use the following definition.

Definition 5. Let f(x) be a rational polynomial of degree n, f(x) = a0x
n +

a1x
n−1 + · · · + an and plot the lattice points (i, νp(ai)), 0 ≤ i ≤ n. The Newton

polygon of f(x) is the lower boundary of the convex hull of the set of these lattice

points.

We are mainly concerned with the monic polynomial B
(l)
n (x), whose Newton

polygon has (0, 0) as its initial vertex, and the degrees and coefficients are read

from the highest down.

Definition 6. We define the Kimura function N(n; p) to be the smallest segment

of the base p expansion of n with digit sum p − 1. (N(n; p) is only defined if

σp(n) ≥ p− 1.) For p = 2, it is convenient to let [n] be the set of all 2-powers in its

binary expansion of n, so that σ2(n) = #([n]), and N(n; 2) = min{[n]} = 2ν2(n).

The poles and their locations can be found by determining the (longest) Kimura

chain as follows (cf. [1, 3]): viewing B
(l)
n (x) from the highest degree down, the

first pole has order 1. If s = l − n− 1, the first pole occurs in degree n − N1

where N1 = N(n− S1; p), and S1 is the smallest segment of n such that p does

not divide
(

s
N1/(p−1)

)
. Similarly, the next higher pole has order 2 and occurs in

degree n−N1 −N2, where N2 is defined by minimality, having the condition that

N2 = N(n−N1−S1−S2; p) and p does not divide
(

s
N2/(p−1)

)
. Continue the process

as long as possible. Then the maximum pole is the number of Ni, and this pole M

first occurs in degree n−
∑M
i=1Ni.

Not only does this algorithm determine the maximum pole, but it determines the

first occurrence of each pole and the vertices of the descending portion of the Newton

polygon. The poles occur in increasing order 1, 2, . . . ,M and the first occurrence

of the pole of order j is in degree n−
∑j
i=1Ni, i.e., the j-th vertex of the Newton

polygon is (
∑j
i=1Ni,−j).

Since σp(Ni) = p− 1, for every i, it follows that M ≤ σp(n)/(p− 1), which also

shows that B
(l)
n has a pole of order σp(n)/(p− 1) if and only if p does not divide(

s
n/(p−1)

)
, where s = l − n− 1. If there is such a pole, it occurs only in the constant

coefficient B
(l)
n ; cf. [1].

Note that if a is the highest degree in which the coefficient has an order M pole,

then a = n−
∑M
i=1Ni, so σp(a) = σp(n)−M · (p− 1), which implies that the AMZ
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estimate for S(n, k) can be restated as νp(S(n, k)) ≥ (σp(k)−σp(n))/(p−1)+σp(n−
k)/(p− 1)−M = (σp(k)− σp(n))/(p− 1) + σp(a)/(p− 1). This confirms the result

that the AMZ estimate improves the MZ estimate in all cases which are not MZC

(i.e., where a 6= 0). The AMZ estimate for s(n, k) can be similarly restated.

Remark 16. If we consider the higher order Bernoulli polynomial associated with

S(n, k), i.e., n := n− k and l: = −k, then s = −k − (n− k)− 1 = −n− 1. So if

di = Ni/(p− 1) then
(

s
Ni/(p−1)

)
= (−1)di

(
n+Ni/(p−1)

n

)
. The situation for p = 2 is

much easier than for odd primes: the poles of B
(−l)
n−k(x) correspond, in increasing

order, to the set difference [n− k]− [n] = [n− k]− [n]
⋂

[n− k], where the elements

are arranged in increasing order, and the maximum pole M = #([n]− [n]
⋂

[n−k]).

If we consider the Stirling number s(n, k) with n := n− k and l := n, then

s = k − 1, so the pole condition is p -
(

k−1
Ni/(p−1)

)
. Thus, if p = 2, the maxi-

mum pole M is #([n − k]
⋂

[k − 1]), and the almost minimum zero estimate is

ν2(s(n, k)) ≥ σ2(k − 1)− σ2(n− 1) + #([n− k]− [k − 1]).

Adelberg defined in [3] the concept of “maximum pole case” (MPC) for higher or-

der Bernoulli polynomials, when the maximum pole of B
(l)
n (x) has order σp(n)/(p−

1), which led to the concept of “minimum zero case” (MZC) for Stirling numbers

of both kinds in [4]. We now have the concepts of almost minimum zero, shifted

minimum zero and shifted almost minimum zero cases for p = 2 for Stirling numbers

of both kinds (cf. [5]), and we invert the process by now defining the concepts of al-

most maximum pole case, shifted maximum pole case, and shifted almost maximum

pole case for higher order Bernoulli polynomials for general primes p.

Definition 7. The Bernoulli polynomial B
(l)
n (x) is an almost maximum pole case if

the pole of B
(l)
n is the maximum pole of B

(l)
n (x); B

(l)
n (x) is a shifted maximum pole

case if the pole of B
(l+1)
n (1) has order σp(n)/(p− 1), which is equivalent to saying

the pole of B
(l+1)
n has order σp(n)/(p − 1); B

(l)
n (x) is a shifted almost maximum

pole case if the pole of B
(l+1)
n (1) is the maximum pole of B

(l+1)
n (x+ 1), which is the

maximum pole of B
(l+1)
n (x).

Remark 17. Each of these cases corresponds to an estimate, namely the MP and

SMP cases correspond to the estimates νp(B
(l)
n ) and νp(B

(l+1)
n (1)) ≥ −σp(n)/(p−1),

while the AMP and SAMP cases correspond to the estimates νp(B
(l)
n ) ≥ −M and

νp(B
(l+1)
n (1)) ≥ −M ′, where M is the maximum pole of B

(l)
n (x) and where M ′ is

the maximum pole of B
(l+1)
n (x). Furthermore, using the standard translations (A.2)

and (A.3) from higher order Bernoulli numbers and polynomials to Stirling numbers

of each kind, these cases and estimates correspond to the cases and estimates for

the Stirling numbers of each kind.

Remark 18. The motivation for the shifted cases is the recursion formula for

higher order Bernoulli numbers. It should be noted that since the strictly decreasing
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portion of the Newton polygon of B
(l+1)
n (x+1) is the same as the strictly decreasing

portion of the Newton polygon of B
(l+1)
n (x), these two polynomials have the same

maximum pole. Thus, we have geometric interpretations of each of the four cases:

• the maximum pole case (MPC) says that the Newton polygon of B
(l)
n (x) is

strictly decreasing;

• the almost maximum pole case (AMPC) says that the Newton polygon of

B
(l)
n (x) has a horizontal final segment;

• the shifted maximum pole case (SMPC) says that the Newton polygon of

B
(l+1)
n (x+ 1) (or of B

(l+1)
n (x)) is strictly decreasing;

• the shifted almost maximum pole case (SAMPC) says that the Newton poly-

nomial of B
(l+1)
n (x+ 1) has a horizontal final segment.

It should be noted that our terminology of poles and maximum poles, which we

think is illuminating, is not completely standard. An alternative is to extend the

p-adic valuation to Q[x] by νp(f(x)) = min{νp(ai)} if f(x) =
∑
i aix

n−i. We can

then express each of the cases in terms of this extension, e.g., the AMPC says that

νp(B
(l)
n (x)) = νp(B

(l)
n ). This approach necessitates dealing with negative signs for

the poles, and appears to us to be less constructive.

A.4. Partitions and Criteria for the Four Cases

In order to determine the poles of a higher order Bernoulli polynomial B
(l)
n (x),

where the order l ∈ Z, we need some preparation to determine the p-adic valuations

of higher order Bernoulli numbers and the sum of the coefficients of higher order

Bernoulli polynomials, in terms of sums based on partitions, which will be given

in (A.4) and (A.5). If u = (u1, u2, . . . ) is a sequence of natural numbers eventually

zero, we regard u as a partition of the number w = w(u) =
∑
iui, where ui is

the multiplicity of the part i in the partition and d = d(u) =
∑
ui is the number

of summands. If s = l − n− 1, we define tu = tu(s) =
(
s
d

)(
d
u

)
/Λu, where

(
d
u

)
=(

d
u1u2...

)
is a multinomial coefficient, and Λu = 2u13u2 · · ·. It is also convenient to

let νp(u) = νp(Λ
u) =

∑
uiνp(i+ 1); cf. [2, Equation (9)].

In [5, Theorem 3.3] Adelberg found three critical partitions for p = 2 that deter-

mine whether B
(l)
n (x) is an AMZC or an SAMZC, namely u1 = n, or u1 = n− 1, or

u1 = n− 3 and u3 = 1. We will see that the situation is slightly simpler when p is

an odd prime, since there are only two critical partitions that are relevant to con-

sideration of the cases. For p = 2 the maximum pole for B
(−k)
n−k (x) is #([n−k]− [n]),

while for B
(n)
n−k the maximum pole is #([n − k]

⋂
[k − 1]). For p = 2 an equivalent

formulation to [5, Theorem 3.3] shows that S(n, k) is an AMZC if and only if exactly

one of the following conditions hold, with r = n− k:
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(1) ν2(
(
n+r
n

)
) = #([n]

⋂
[r]);

(2) ν2(
(
n+r−1
n

)
) = #([n]

⋂
[r])− 1 (which implies that ν2(n) < ν2(k));

(3) n is even and k is odd, and ν2(
(
n+r−2
n

)
) = #([n]

⋂
[r])− 1.

This reformulation shows why all three conditions cannot hold simultaneously, and

in fact, (2) and (3) cannot both be true. There are similar results for the Stirling

numbers s(n, k) of the first kind, as well as for the shifted estimates and cases when

p = 2; cf. [5].

The key formulas for us are the explicit representations of B
(l)
n and B

(l)
n (1) in

terms of partitions, namely

B(l)
n = (−1)nn!

∑
w(u)≤n

tu(s) (A.4)

where s = l − n− 1, and the corresponding formula for

B(l)
n (1) = (−1)nn!

∑
w(u)=n

tu(s); (A.5)

cf. [1] and [2, formulas (10) and (11)].

To translate the results obtained for higher order Bernoulli polynomials to

Stirling numbers, we use the specialization n := n− k, and l := −k or l := n in

(A.2) and (A.3) for the Stirling numbers of second or first kind, respectively.

Note that s = −k − (n− k)− 1 = −n− 1 for the Stirling numbers of the sec-

ond kind and
(
s
d

)
= (−1)d

(
n+d
n

)
. For the Stirling numbers of the first kind,

s = n− (n− k)− 1 = k − 1 and
(
s
d

)
=
(
k−1
d

)
.

Adelberg’s analysis of the cases in [5] was actually based on the partitions u, with

w(u) ≤ n− k or w(u) = n− k for the shifted cases. He showed that for p = 2 there

are the three critical (or canonical) partitions noted above that determine if we have

an AMZC or an SAMZC for Stirling numbers, and one partition for the MZC and

SAMZC. We will now demonstrate that the situation is somewhat simpler for odd

p, in that there are only two critical partitions that determine the case, and one of

these partitions can be often ruled out, so that it will suffice to test the remaining

critical partition.

We consider all partitions u with w(u) ≤ n and set s = l − n− 1. We define

the companion sequence τu(s) = τu = (n)wtu = (n!/(n− w)!)tu = w!
(
n
w

)
tu. If M is

the maximum pole of the coefficients of B
(l)
n (x), then M is the maximum pole of

{τu | w ≤ n}, i.e., min{νp(τu) | w ≤ n} = −M ; cf. [1]. Since n! = (n)w(n− w)!, we

have n!tu = (n− w)!τu, so νp(n!tu) ≥ −M , with equality if and only if νp(τu) = −M
and p - (n− w)!, i.e., w ≥ n− (p− 1). We also see that if νp(n!tu) = −M , in which

case we say u works, then u minimizes both {νp(tu) | w ≤ n} and {νp(τu) | w ≤ n}.
By the same kind of argument that appears in [1, 5] if r = n/(p− 1) ∈ N, the
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only a priori candidate partitions u having νp(n!tu) = −M are the partitions when

up−1 = r, or up−1 = r − 1 (there are many partitions with w ≤ n), or up−1 = r − 2

and w = n− (p− 1) = (r − 1)(p− 1) (again there are many partitions). The first

partition is concentrated in place p − 1, while the other types of partitions are

concentrated in places 1, ..., p − 1. We first show that the last types of partitions,

when up−1 = r − 2 and w = n− (p− 1) do not work: obviously
∑
i<p−1 iui = p− 1,

so
∑
i<p−1 ui ≥ 2. If u is the partition with up−1 = r, and u′ is any parti-

tion of the last type, we let d′ = d(u′). Then d′ ≥ r = d(u). Hence νp(tu′) =

νp((s)d′/(u
′
1! . . . u′p−2!(r − 2)!)) − (r − 2) > νp((s)r/r!) − r = νp(tu). (Note that

d′ ≥ d is critical and follows from above. Also (r − 2)! = r!/(r(r − 1)), so

νp((r − 2)!) ≤ νp(r!), and all ui < p for i < p− 1, so νp(ui!) = 0.) Thus, νp(tu′) >

νp(tu), so u′ cannot give the maximum pole.

Next, consider partitions of the second type u′′, i.e., when u
′′

p−1 = r − 1, which

are not concentrated in place p− 1. Then d′′ = d(u′′) ≥ r for these partitions, and

the same argument shows that νp(τu) > νp(τu′′), so u′′ cannot give the maximum

pole.

Hence the only partitions u with w ≤ n that can satisfy νp(τu) = −M are the

two partitions concentrated in place p− 1, with up−1 = r or up−1 = r − 1.

Finally, we show that for any prime p, including p = 2, if νp(l) ≤ νp(n), and

u is the partition with up−1 = r and u′ is the partition concentrated in place p −
1 with u′p−1 = r − 1 then νp(tu′) > νp(tu): since s = l − n− 1, we have tu/tu′ =

(
(
s
r

)
/pr)/(

(
s
r−1
)
/pr−1) = (1/p)(l − n − r)/r = (1/p)(l − pn/(p − 1))/(n/(p − 1)) =

(1/p)((p− 1)l − pn)/n. But νp(l) ≤ νp(n) implies that νp((p− 1)l − pn) = νp(l) ≤
νp(n), so νp(tu/tu′) < 0; thus, tu has a bigger pole than tu′ , and u is the only

candidate with w(u) ≤ n for νp(n!tu) = νp(τu) = −M .

Thus, we have proven the following theorem, which is one of the most important

results of this paper, since it leads directly to significant theorems for the p-adic

valuations of Stirling numbers of both kinds.

Theorem 32. Let p be an odd prime, and assume that r = n/(p− 1) ∈ N. Let M

be the maximum pole of B
(l)
n (x) and M ′ be the maximum pole of B

(l+1)
n (x), and let

u be the partition with up−1 = r.

(a) Then B
(l−1)
n (x) is an SAMPC if and only νp(

(
l−n−1
r

)
) = σp(n)/(p− 1)−M ,

which is equivalent to νp(τu) = −M = νp(B
(l)
n (1)).

(b) If νp(l) ≤ νp(n), then B
(l)
n (x) is an AMPC if and only if νp(τu) = −M =

νp(B
(l)
n ), which is equivalent to νp(

(
l−n−1
r

)
) = σp(n)/(p − 1) −M , so under

the assumption that νp(l) ≤ νp(n), we have B
(l−1)
n (x) is an SAMPC if and

only if B
(l)
n (x) is an AMPC, and if B

(l−1)
n (x) is an SAMPC or B

(l)
n (x) is an

AMPC then νp(B
(l)
n ) = νp(B

(l)
n (1)).



INTEGERS: 22 (2022) 39

(c) If νp(l) > νp(n) then νp(l+ 1) ≤ νp(n), so we can apply (b) with l replaced by

l + 1 and M replaced by M ′.

The situation is slightly different for p = 2, since there is a third canonical par-

tition u′′ if n is odd, where u′′1 = r − 3 = n− 3 and u′′3 = 1. The only difference

is that instead of νp(τu) = −M and νp(τu) = −M ′, we now have ν2(τu) = −M or

ν2(τu′′) = −M (exclusive or) and ν2(τu) = −M ′ or ν2(τu′′) = −M ′ (exclusive or).

Clearly, ν2(τu) = −σ2(n) + ν2(
(
l−n−1
n

)
) and ν2(τu′′) = 1− σ2(n) + ν2(

(
l−n−1
n−2

)
) for

B
(l)
n . The situation when p = 2 will be made explicit in Theorem 33.

Remark 19. The last assertion (parts (b) and (c) of the preceding theorem) leads to

Amdeberhan-type identities in several different contexts, e.g., for Stirling numbers

of both kinds. If (c) is true, replace l by l + 1.

We have an analogous theorem for p = 2, which follows from our analysis in

[5]: there are now three critical partitions which can work, the partition u where

u1 = n, the partition u′ where u′1 = n− 1, and the partition u′′ where u′′1 = n− 3

and u3 = 1. We have seen that the partition u′ can only work if ν2(l) ≤ ν2(n), and

cannot work for B
(l)
n (1) since w(u′) = n− 1 < n. This gives the following theorem.

Theorem 33. Let p = 2, and let u be the partition where u1 = n, and let u′′ be the

partition where u′′1 = n− 3 and u′′3 = 1. Let M be the maximum pole of B
(l)
n (x) and

M ′ be the maximum pole of B
(l+1)
n (x).

(a) Then B
(l−1)
n (x) is an SAMZC if and only if ν2(τu) = −M = ν2(B

(l)
n (1))

or ν2(τu′′) = −M = ν2(B
(l)
n (1)) (exclusive or), where ν2(τu) = −σ2(n) +

ν2(
(
l−n−1
n

)
) and ν2(τu′′) = 1− σ2(n) + ν2(

(
l−n−1
n−2

)
).

(b) If ν2(l) ≤ ν2(n), then B
(l)
n (x) is an AMPC if and only if B

(l−1)
n (x) is

an SAMPC; and if B
(l)
n (x) is an AMPC or B

(l−1)
n (x) is an SAMPC, then

ν2(B
(l)
n ) = ν2(B

(l)
n (1)) = −M .

(c) If ν2(l) > ν2(n) then ν2(l + 1) = 0, so we can replace l by l + 1, and get that

B
(l+1)
n (x) is an AMPC if and only if B

(l)
n (x) is an SAMPC; and if B

(l+1)
n (x) is

an AMPC or B
(l)
n (x) is an SAMPC, then ν2(B

(l+1)
n ) = ν2(B

(l+1)
n (1)) = −M ′.

Remark 20. Each of these theorems translates to give a theorem about Stirling

numbers of each kind. In particular, the last equality of each theorem gives an

Amdeberhan-type relation in Section 3.3 for Stirling numbers of the second kind

and in Section 4.1 for Stirling numbers of the first kind.

For easy reference, and for comparative purposes, we include the analysis for

p = 2. The criteria were given in [5] for Stirling numbers of the second kind, but

not for Stirling numbers of the first kind. Our analysis for the odd primes has
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enabled us to restate the criteria for p = 2 in a simpler form (cf. [5, Theorem 3.3]),

which highlights the role of the condition νp(k) ≤ νp(n) for S(n, k). Since it has not

been previously done, we will give the AMZC and SAMZC criteria in our section

on Stirling numbers of the first kind.

Specifically, we note that for p = 2, the binomial coefficient
(
a+b
a

)
has no unforced

carries if and only if ν2(
(
a+b
a

)
) = #{[a]

⋂
[b]}. Thus for p = 2 and B

(−k)
n−k (x), the three

critical partitions u are specified by u1 = n− k = r, and u1 = r − 1, and u1 = r − 3

and u3 = 1, with d = r, r − 1, or r − 2, respectively. The criterion for AMZC (cf. [5,

part (iii) of Theorem 3.3]) can be restated as requiring exactly one of the following

conditions to hold:

(i) for the first partition u, there are no unforced carries for n+ d;

(ii) for the second partition u, there are no unforced carries for n+d and ν2(n) <

ν2(k);

(iii) for the third partition u, there are no unforced carries for n+ d, and k is odd

and n is even, and ν2(r − 1) = ν2(n).

Stating the conditions this way makes it very clear why (ii) and (iii) cannot both

be true.

We are now ready to summarize and state more formally than we have before,

the four estimates and cases for Stirling numbers of the second kind for odd primes

p.

(1) The minimum zero estimate is νp(S(n, k)) ≥ (σp(k) − σp(n))/(p − 1). When

this estimate is sharp, we have a minimum zero case (MZC). The estimate

was discovered by De Wannemacker in [10]. His proof is unrelated to ours.

The MZC says the Newton polygon is strictly decreasing, which implies that

p− 1 | n− k, and also that νp(k) ≤ νp(n).

(2) The shifted minimum zero estimate is νp(S(n, k)) ≥ (σp(k−1)−σp(n−1)/(p−
1). When this is sharp we have the shifted minimum zero case (SMZC). The

shift improves the estimate if and only if νp(n) < νp(k). The SMZC says

the shifted higher order polynomial has a strictly decreasing Newton polygon,

again implying that p− 1 | n− k.

The problem with these estimates is that they can be very crude, namely

even though νp(S(n, k)) ≥ 0, the estimates can be negative (vacuous). We

can refine them be defining the almost minimum zero cases (AMZC) and

shifted almost minimum zero cases (SAMZC).

(3) If M is the maximum pole of B
(−k)
n−k (x), then we have the almost minimum
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zero estimate

νp(S(n, k)) ≥ νp
((

n

k

))
−M = (σp(k)− σp(n))/(p− 1)

+ (σp(n− k)/(p− 1)−M).

We see that this estimate improves the minimum zero estimate in every case

when that estimate is not sharp. It is not hard to show that this estimate

is never vacuous (negative) (cf. Theorem 11). When this estimate is sharp,

i.e., when νp(B
(−k)
n−k ) = −M , we have the AMZC. For simplicity, we generally

assume that p− 1 | n− k.

(4) Finally, if M ′ is the maximum pole of B
(−k+1)
n−k (x), we have the shifted almost

minimum zero estimate,

νp(S(n, k)) ≥ νp
((

n− 1

k − 1

))
−M ′

= (σp(k − 1)− σp(n− 1))/(p− 1) + (σp(n− k)/(p− 1)−M ′).

If this estimate is sharp, i.e., if νp(B
(−k+1)
n−k (1)) = −M ′, we have the SAMZC.

Again for simplicity, we generally assume that p− 1 | n− k.
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