
Sankhy�a : The Indian Journal of Statistics1997, Volume 59, Series A, Pt. 1, pp. 133-137THE MOMENTS OF THE NUMBER OF CYCLES OFA RANDOM PERMUTATION BY SIMPLEENUMERATIONBy T. LENGYELOccidental College, Los AngelesSUMMARY. We present a new proof for the Poisson limit distribution of the numberof �xed points of a random permutation. Despite the combinatorial nature of the proof, itdoes not involve the use of inclusion-exclusion principle, cycle representation of permutations,number of derangements, rewriting formulas for the distribution of the �x points, generatingfunctions, or transformation formulas between moments. The proof is elementary in terms ofenumeration and based on the notion of Stirling numbers. It requires some familiarity withthe moment generating function of the Poisson distribution and the Fr�echet-Shohat momentconvergence theorem. The method is extended to the distribution of the number of k-cyclesof an n-element set, for k � n. 1. IntroductionLet Xn;r denote the number of r-cycles of a random permutation over ann-element set [n] = f1; 2; : : : ; ng. We use the convenient Xn = Xn;1 notationfor the number of �xed points. Let pn(k) denote the probability that a randompermutation over [n], for short a random n-permutation, has k �xed points,i.e., pn(k) = P (Xn = k). We �nd the k-th moments Mk(n) = E(Xkn) andMk(n; r) = E(Xkn;r) without using any inclusion-exclusion, inversion or momenttransformation formula or determining the related probabilities.The convergence of the distribution of Xn to the Poisson distribution is wellknown. The limiting distribution can be determined by using formulas for pn(k).We take a di�erent approach and �nd the limit distributions (Corollary) basedon a moment convergence theorem by calculating the moments (Theorems 1and 2). Although we might encounter di�culties for other distributions, in thiscase we can give a simple interpretation of the moments without determiningthe explicit probabilities.Paper received. May 1993. revised June 1996.AMS (1980) subject classi�cations. 60C05, 05A05, 60E10, 05A19.Key words and phrases. Random permutations, moments, combinational probability.



134 t. lengyelWe note that Tak�acs (1991) has recently proved a general convergence theo-rem based on the binomial moments which in addition yields an explicit formulafor the limit distribution. We will use neither binomial nor factorial moments.In this paper S(n; k) denotes the Stirling number of the second kind, i.e., thenumber of partitions of n distinct elements into k non-empty subsets and (x)kstands for x(x� 1) : : : (x� k + 1) where k = 1; 2; : : : The Bell number, $(n), isde�ned as the number of all partitions of [n], i.e., $(n) =Pnk=1 S(n; k).2. The number of �xed points and k-cyclesof a random permutationThe problem of analyzing pn(k) and the expected value of the number of�xed points of a random n-permutation is probably originated in card games.We count the matches when the cards of two well-shu�ed decks are matchedagainst each other. The �rst solution goes back to Montmort who found arecurrence relation for the number of matches in 1708. The problem has beengeneralized in many ways and counting unrestricted and restricted permutationsof an n-element set has been a popular area of research (e.g., Penrice (1991)and Tak�acs (1981)).The probability pn(k) is usually determined by the inclusion-exclusion prin-ciple (cf. Feller (1968), Graham et al. (1988), and Wilf (1990)). Notice thatpn(n � 1) = 0. It also follows that pn(0) = Pni=0(�1)i 1i! = e�1 + O(1=n!)and pn(k) = 1k!Pn�ki=0 (�1)i 1i! , which yields the asymptotic formula pn(k) =1ek! + O( 1(n�k)!), for every �xed k (see e.g., Feller (1968)). The asymptotic be-havior of pn(k) can be derived by the method of generating functions (cf. Wilf(1990)) too. Roughly speaking, pn(k) conforms to the Poisson law with param-eter 1 as n tends to 1. Similar results hold for the distribution of Xn;r. Wegive an alternative proof of these facts based on the moments.Observe that the probabilities are nearly independent of n. It turns out thatfor n � 2;M1(n) = E(Xn) = 1 and M2(n) = E(X2n) = 2 do not depend on n.In general, one can calculate Mk(n) byTheorem 1. The moments Mk(n) = E(Xkn) of the number of �xed pointsof a random n-permutation areMk(n) = � $(k); if k � nPni=1 S(k; i) if k > n:Note that for every n, the �rst n moments of Xn do not depend on n. Weset M0(n) = 1(n � 1).Proof. Let Yi be the indicator random variable of the event that elementi is a �xed point of the random n-permutation, i.e.,



the number of cycles by simple enumeration 135Yi = � 1; if element i is a �xed point;0; otherwise.Clearly, the random variables Yi are identically distributed though they are notindependent. For the number of �xed points Xn, we get Xn = Pni=1 Yi. Weevaluate Mk(n) = E(Xkn) by expanding the right hand side of this equationusing the multinomial expansion. That is,Mk(n) = E �(Y1 + Y2 + : : :+ Yn)k� =XNn � ki1 : : : in�E(Y i11 Y i22 : : :Y inn )where the summation extends over the set Nn of n-tuples (i1; i2; : : : ; in) withnon-negative integer coordinates provided Pnj=1 ij = k.Let l = l(i1; i2; : : : ; in) denote the number of positive exponents in Y i11 Y i22: : :Y inn , i.e., l = jfjjij � 1gj. Clearly, 1 � l � minfk; ng. Notice that Y ci = Yiif c 6= 0. One can easily see that Y i1i Y i22 : : : Y inn and Y1Y2 : : : Yl(i1;i2;:::;in) areidentically distributed. There are �nl � ways to choose the l variables with a givenset of positive exponents. For Y1Y2 : : :Yl = 1 if and only if the n-permutationhas the �rst l elements of [n] as �xed points, thus E(Y1Y2 : : :Yl) = (n�l)!n! . LetN+l denote the set of l-tuples (i1; i2; : : : ; il) such that ij � 1, for all j; 1 � j � l,andPlj=1 ij = k. It follows thatMk(n) = minfk;ngXl=1 XN+l � ki1 : : : il ��nl � (n� l)!n! = minfk;ngXl=1 XN+l � ki1 : : : il � 1l! :Now observe that XN+l � ki1 : : : il � = S(k; l)l!for the number of partitions of a k-element set into l non-empty blocks is countedon both sides. The order of the blocks is taken into account but not the orderof the elements inside the blocks. We �nd that Mk(n) =Pminfk;ngl=1 S(k; l). Theproof is now complete.Remark. The previous statement can be derived by using factorial mo-ments for expressing Mk(n) = E(Xkn); k � 1. In fact, the transformation for-mula between central and factorial moments, Xk =Pkl=1 S(k; l)(X)l , becomesE(Xk) = Pkl=1 S(k; l)E((X)l) = Pminfk;ngl=1 S(k; l) after taking the expectedvalues. The proof of the formula and the calculation of E((X)l), however, areusually based on the combinatorial theory of the Stirling numbers of the sec-ond kind and the number of derangements. Our proof completely avoided thisapproach. Nonetheless, the identity xk = Pkl=1 S(k; l)(x)l ; k � 1, follows eas-ily when the moment enumeration method is applied to binomially distributedrandom variables.



136 t. lengyelWe can generalize the previous theorem and obtainTheorem 2. The moments Mk(n; r) = E(Xkn;r) of the number of r-cyclesof a random n-permutation areMk(n; r) = ( Pki=1 S(k; i)=ri; if k � [n=r]P[n=r]i=1 S(k; i)=ri; if k > [n=r]:We note that the k-th moment of the Poisson distribution with parameter� = 1=r isPki=1 S(k; i)=ri. Theorem 2 and the Fr�echet-Shohat moment conver-gence theorem (see e.g., Moran (1968)) impliesCorollary. The number of r-cycles of a random n-permutation has Pois-son limit distribution with parameter 1=r.Proof of Theorem 2. The proof is based on the revised de�nition ofthe indicator variables Yi. We set N = �nr � and de�ne Yi; i = 1; 2; : : : ; N , asthe indicator variable of the event that the i-th element in the list of r-elementsubsets of [n] forms an r-cycle of the random n-permutation. That is,Yi = � 1; if the i-th r-element subset of [n] is an r-cycle;0; otherwise:Let l = l(i1; i2; : : : ; in) denote the number of positive exponents in Y i11 Y i22 : : :Y iNN .Incidentally, Y i11 Y i22 : : :Y iNn is zero or one, and it is one if and only if the corre-sponding l r-element subsets form disjoint r-cycles of the permutation. Providedthe subsets are disjoint, there are ((r�1)!)l(n�lr)! ways of forming the requiredr-cycles and completing the n-permutation. We can select the l disjoint subsetsin � nr : : : r� =l! ways (with l copies of r under n), and there are S(k; l)l! ways ofmaking l-tuples with positive coordinates of sum k. In other words, the multino-mial expansion of E �(Y1 + Y2 + : : :+ YN )k� has S(k; l)l! terms Y i11 Y i22 : : :Y iNN ,with l positive exponents, each contributing� nr : : : r� 1l! ((r � 1)!)l(n � lr)!n! = 1rll!to Mk(n; r). Summation on l; 1 � l � minfk; [n=r]g, yields the identity forMk(n; r).
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