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Abstract

This work offers an interesting application of analytic iteration theory and classical complex
analysis to determine some new (and old) results in asymptotic enumeration. The method
treats functional equations of a particular form, which have a natural interpretation in terms
of combinatorial generating functions. Partition lattice chains and Takeuchi numbers are
among the applications of this method presented here.

1. Problems Suited to this Analysis

Many combinatorial classes can be described in a recursive way, built from basic atomic units
using a handful of combinatorial operations, as described in [2]. One of the principal fruits of
this point of view is a set of functional equations for the exponential and ordinary generating
functions of the family. The work presented here considers families satisfying a particular type
of combinatorial equation and gives explicit asymptotic formulas, determined directly from the
corresponding functional equations. The principal results are summarized in Theorem 1. Two
applications of the main theorem are detailed: Asymptotic enumeration of partition lattice chains
and Takeuchi numbers. This technique is equally amenable to the asymptotic enumeration of Bell
numbers.

We begin with brief descriptions of these two problems. For each example we give a functional
equation satisfied by a generating function of the family.

1.1. Partition lattice chains. The set of partitions of an n-set can be ordered by subset inclusion
to build a poset. Define Zn as the number of chains from the minimal element {{1}, {2}, . . . , {n}}
to the maximal element {1, 2, . . . , n}. This sequence begins Z1 = 1, Z2 = 2, Z3 = 4, Z4 = 32. These
numbers satisfy the following recurrence, due to Lengyel [4]:

Zn =
n−1∑
k=1

Sn,kZk

where the Sn,k are the Stirling numbers of the second kind. From this, we deduce the functional
equation for the exponential generating function Z(z) =

∑
n Zn

zn

n! , also due to Lengyel:

(1) Z(z) =
1
2
Z(ez − 1) +

z

2
.

In the final section we give an asymptotic formula for Zn, which matches previous work by Flajolet
and Salvy.
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1.2. Takeuchi Numbers. Consider the following recursive function of Takeuchi, related to ballot
numbers:

TAK(x, y, z) := if x ≤ y then y else TAK(TAK(x− 1, y, z),TAK(y − 1, z, x),TAK(z − 1, x, y)).

Denote by T (x, y, z) number of times the else clause is invoked when evaluating TAK(x, y, z).
Define the sequence Tn by Tn = T (n, 0, n+1). The initial terms are T1 = 1, T2 = 4, T3 = 14, T4 = 53.

Knuth determined the following recurrence [3], and its corresponding functional equation for the
ordinary generating function T (z) =

∑
n Tnz

n:

Tn+1 =
n∑
k=0

[(
n+ k

n

)
−
(
n+ k

n+ 1

)]
Tn−k +

n+1∑
k=1

(
2k
k

)
1

k + 1
;

(2) T (z) = zC(z)T (zC(z)) +
C(z)− 1

1− z
, C(z) =

∞∑
k=0

(
2k
k

)
zk

k + 1
.

The methodology presented here yields a new result for the asymptotic expansion of Tn.

1.3. General setup. The common feature of these two problems is that they satisfy a linear
recurrence of the form

Xn =
n∑
k=1

cn,kXn−k + bn,

with a functional equation for either the ordinary or exponential generating function X(z) of the
form:

X(z) = a(z)X ◦ f(z) + b(z),

where f(z) = z + cz2 + dz3 + . . . has a parabolic fixed point. This is the functional equation
associated with the following combinatorial equation where ◦ denotes the substitution operation:
X = A×X ◦F+B. The remainder of this work is devoted to determining an asymptotic expression
for Xn.

2. Asymptotic Analysis

The asymptotic analysis Xn has three major steps. First, we determine an expression for Xn as
an integral, and then we perform a two step analysis on this integral, first using analytic iteration
theory and then using a saddle-point analysis.

2.1. An expression for the coefficient. If a formal power series satisfies Eq. (1.3), with a(z), f(z),
and b(z) analytic near z = 0, then we have the formal solution

X(z) =
∞∑
m=0

(
m−1∏
k=0

a ◦ fk(z)

)
b ◦ fm(z).

We use this formal solution and the Cauchy inversion formula to determine an expression for the
coefficients of the generating series. We have that Xn =

∑∞
m=0Xn,m with

(3) Xn,m =
1

2πi

∮ (m−1∏
k=0

a ◦ fk(z)

)
b ◦ fm(z)

dz

zn+1
.
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2.2. Analytic iteration theory. To illustrate the general idea, we consider a slightly simpler
problem. Let Y (z) be a solution of the homogeneous equation

(4) Y (z) = a(z)Y ◦ f(z).

In this case we have
m−1∏
k=0

a ◦ fk(z) =
Y (z)

Y ◦ fm(z)
.

With this, Eq. (3) rewrites as

(5) Xn,m =
1

2πi

∮
Y (z)

Y ◦ fm(z)
b ◦ fm(z)

dz

zn+1
=

1
2πi

∮
b ◦ fm(z)
Y ◦ fm(z)

Y (z)
dz

zn+1
.

To establish the existence of Y (z) and certain analyticity properties, we use analytic iteration
theory, see [1, 5], and some astute observations.

First, we use the parabolic linearization theorem to show the conjugacy of f(z) to a shift. We have
that f−1(z) exists in some cardioid domain and maps contractively to it, via some (determinable)
function µ. We deduce that fk(z) = µ

(
µ−1(z)− k

)
for z sufficiently small. Given a complete

asymptotic expansion for µ, we have that f−m ◦ µ(s) = µ(s + m) admits a complete asymptotic
expansion for m→∞ of the form:

(6) µ(s+m) ∼ 1
cm

1 +
(

1− d

c2
− s
)

logm
m

+
∞∑
k=2

k∑
j=0

νj,k(s)
(logm)j

mk

 .

Substitute z = µ(s) into Eq (4), and capitalize on the resulting similarities to the gamma function
to determine a solution to the homogeneous equation. Most importantly, we deduce the following
asymptotic result:

(7)
Y ◦ µ(s+ n)
Y ◦ µ(n)

∼ (a ◦ µ(n))s .

Next, substitute z = µ(s +m) and Eq. (7) into the last integral in Eq. (5) and then apply the
asymptotic expansion of µ(s+m) from Eq. (6) to get the following asymptotic formula:

Xn,m ∼ (cm)nm−1−(1− d
c2

) n
m
Y ◦ µ(m)

2πi

∫
C

b ◦ µ(s)
Y ◦ µ(s)

(
a ◦ µ(m)e

n
m

)s
ds.

Returning to Xn, we see that the sum simplifies to

Xn ∼ C
∑
m

(cm)n
Y ◦ µ(m)

m
(a ◦ µ(m))(1−

d
c2

) logm

with

(8) C =
1

2πi

∫
C

b ◦ µ(s)
Y ◦ µ(s)

ds.

2.3. Saddle-point analysis. We conclude by applying a saddle-point analysis to the integral in
Eq. (8). There is a saddle point at a◦µ(m)e

n
m = 1. The saddle has different behavior depending on

the smallest term of a(z) = akz
k + · · · . We can summarize this analysis in the following theorem,

which treats the k = 0, 1 cases separately.
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Theorem 1. Suppose the formal power series X(z) =
∑∞

n=0Xnz
n satisfies

X(z) = a(z)X ◦ f(z) + b(z)

with f(z) = z+ cz2 + dz3 + . . ., a(z) = akz
k + . . ., and b(z) analytic near zero. If c > 0 and 0 < ak

then the following are true:
1. If k = 0, and a0 < 1, then

Xn ∼ Dn! (−c/ log a0)
n n(1− d

c2
) log a0−1 as n→∞, where D = (− log a0)

−(1− d
c2

) log a0 ;

2. If k = 1 then

Xn ∼ Dcne
− 1

2
(1− d

c2
)W ( c

a1
n)2

∞∑
m=0

mn

m!

(a1

c

)m
as n→∞, where D = e

1
2
(1− d

c2
)(log

a1
c

)2 .

3. Combinatorial Applications

We now possess sufficiently many tools to determine some asymptotic results with our earlier
examples.

3.1. Partition lattice chains. Using Eq. (1) we deduce a(z) = 1
2 , f(z) = ez − 1, b(z) = z

2 . We
have µ(s) ∼ 2

s (1−
log s
3s + . . .), and Y ◦ µ(s) = 2s thus we insert c = 1

2 , d = 1
6 , a0 = 1

2 into the main
theorem, part 1. The resulting asymptotic expansion is

Zn ∼ D(n!)2 (2 log 2)−n n−1− 1
3

log 2

as n→∞, where

D =
1
2

(log 2)
1
3

log 2 1
2πi

∫
C
2sµ(s) ds = 1.0986858055 . . . .

3.2. Takeuchi numbers. From Eq. (2), we have a(z) = zC(z), f(z) = zC(z), and b(z) = C(z)−1
1−z .

From this we determine µ(s) ∼ 1
s (1−

log s
s +. . .), and thus, Y ◦µ(s) ∼ e−

1
2
(log s)2/Γ(s). Denote by Bn

the nth Bell numbers. Applying these values to part 2 of the main theorem yields the asymptotic
expansion:

Tn ∼ D
∞∑
m=0

mn

m!
e

1
2
W (n)2 = D′Bne

1
2
W (n)2

as n→∞, where

D′ =
e

2πi

∫
C

b ◦ µ(s)
Y ◦ µ(s)

ds = 2.2394331040 . . . .
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