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Abstract. Zeckendorf’s Theorem states that any positive integer can be uniquely decom-
posed into a sum of distinct, nonadjacent Fibonacci numbers. There are many generalizations,
including results on existence of decompositions using only even indexed Fibonacci numbers.
We extend these further and prove that similar results hold when only using indices in a given
arithmetic progression. As part of our proofs, we generate a range of new recurrences for the
Fibonacci numbers that are of interest in their own right.

1. Introduction

The Fibonacci sequence is defined via the recurrence relation

Fn = Fn−1 + Fn−2 (1.1)

for n ≥ 2, where we need two initial conditions; often these are F0 = 0 and F1 = 1. We can
use Binet’s formula to jump to the nth term:

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
=

ϕn − (−ϕ)−n

√
5

, (1.2)

where ϕ is the golden ratio 1+
√
5

2 .
There are many interesting properties of the Fibonacci numbers; see for example [25]. We

focus on Zeckendorf’s Theorem; it turns out that if we change the initial conditions, the
Fibonacci numbers are equivalent to a decomposition property of the integers.1

Theorem 1.1. (Zeckendorf’s Theorem) Consider the Fibonacci recurrence with initial condi-
tions F0 = 1, F1 = 2. Any positive integer N can be expressed uniquely as a sum of nonadjacent
Fibonacci numbers:

N =
∞∑
k=0

bkFk, where bk ∈ {0, 1} and bk · bk+1 = 0. (1.3)

Further, the Fibonacci numbers are the unique sequence of positive numbers such that every
integer can be expressed uniquely as a sum of nonadjacent terms. Note we could also choose
initial conditions F0 = 0, F1 = 1 if we only use indices k ≥ 2.

The classic proof is by induction on N , but other proofs have been developed as well; see
[4, 24, 27, 32, 36]. There is extensive literature on generalizations and variations of Theorem
1.1; see [1, 3, 4, 11, 8, 13, 17, 22, 23, 29, 30, 31]. Zeckendorf decompositions have also been
studied in a combinatorial framework in numerous places, including [2, 7, 16, 24, 27]. The

1If we began with F0 = 0, F1 = 1, then F2 = 1 and we lose uniqueness of decomposition, because we can
add an F0 and we have two ways to represent 1.
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combinatorial approach initiated in [24] is useful for studying related problems, such as the
distribution of the number of summands and the gaps between them in decompositions.

Previous work derived decomposition results when we can only use Fibonacci numbers whose
indices have the same parity. For example, there is the even Fibonacci representation of N
(see [9, 10]): every positive integer has a unique decomposition of the form

∞∑
k=1

bkF2k with bk ∈ {0, 1, 2} and if bi = bj = 2 then ∃k with i < k < j and bk = 0, (1.4)

where we use the initial conditions F2 = 1, F3 = 2 to ensure that the decompositions are
unique.2 The Fibonacci recurrence decomposes a summand into two terms: one whose index
has the same parity as the original summand, and one whose index has the opposite parity.
Thus, the existence of decomposition (1.4) is to be expected.

Example 1.2. As an example, here are the Zeckendorf and even Fibonacci representations of
83 respectively:

83 = 55 + 21 + 5 + 2 = F10 + F8 + F5 + F3,

83 = 1 · 55 + 1 · 21 + 2 · 3 + 1 · 1 = 1 · F10 + 1 · F8 + 0 · F6 + 2 · F4 + 1 · F2. (1.5)

As stated in Theorem 1.1, the initial conditions for Zeckendorf Decompositions are F0 = 0,
F1 = 1. On the other hand, the even Fibonacci representation (1.4) uses the initial conditions
F2 = 1 and F3 = 2 to maintain uniqueness of decompositions. For precisely this reason, unlike
the decomposition (1.3), we begin summing terms in (1.4) when k = 1.

Given the decomposition (1.4) result, it is natural to ask whether other subsequences of
the Fibonacci numbers also yield unique decompositions, and if so, what they are. We prove
there are such decompositions when we restrict our indices to be in an arithmetic progression.
Before stating our results, we first establish some notation.

Definition 1.3. (n-gap Fibonacci numbers) For n,m ∈ N+ with 0 ≤ m < n + 1, let
F(k;n,m) = Fk(n+1)+m equal the Fibonacci numbers whose indices are congruent to m modulo
n + 1. We call m the offset, and call F(k;n,m) an n-gap subsequence. Note the Fibonacci
numbers are a 0-gap subsequence, and the even and odd index results concern 1-gap subse-
quences.

As we will see, the construction of n-gap Fibonacci subsequences is based on the theory of
Positive Linear Recurrence Sequences (PLRS).

Definition 1.4. (PLRS) A PLRS is a sequence of integers {Hn}∞n=1 with the following prop-
erties.

(1) There are nonnegative integers L, c1, . . . , cL such that

Hn = c1Hn−1 + c2Hn−2 + · · ·+ cLHn−L, (1.6)

where L, c1, cL > 0.
(2) H1 = 1 and for 1 ≤ n < L, we have

Hn = c1Hn−1 + c2Hn−2 + · · ·+ cn−1H1 + 1. (1.7)

2If we were to allow k = 0, then the F0 = 0 term from the Fibonacci Sequence would be allowed in our
decompositions and we would lose the uniqueness property of Zeckendorf Decompositions.
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The study of PLRS is foundational in many papers relating to Zeckendorf decompositions;
see [2, 3, 5, 6, 20, 29]. There is extensive literature on when there is a unique decomposition
arising from a given recurrence relation, as well as a host of other properties (such as the
distribution of the number of summands in a decomposition, gaps between summands, and
digital expansions of these sequences). In particular, if the recurrence relation is a PLRS, then
Miller and Wang [30, 31] proved that there exists a unique legal decomposition; for more on
these sequences, see [3, 4, 12, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 33, 34, 35], and for other
types of decompositions, see [1, 5, 6, 7, 13, 14].

Theorem 1.5. (n-gap Fibonacci numbers as a PLRS) If n = 2 or n ≥ 3 is odd, then the n-gap
Fibonacci sequence {F(k;n,m)}∞k=1 is a PLRS for any 0 ≤ m < n+1. If n = 2, then there is
a unique decomposition of every positive integer taking the form (1.4), with initial conditions
F2 = 1, F3 = 2. On the other hand, if n ≥ 3 is odd, then the decomposition is still unique for
every positive integer, but it takes the form

∞∑
k=0

bkFk(n+1)+m with |bk| ≤ an for all k ≥ 1, (1.8)

again with initial conditions F2 = 1, F3 = 2. Here an refers to ϕn rounded to the nearest
integer (one of the Lucas numbers).

Just like the even Fibonacci decomposition, we use the initial conditions F2 = 1, F3 = 2
for the odd n-gap Fibonacci decomposition because we want to ensure all decompositions are
unique. Here is an example of what these decompositions look like for specific values of n and
m.

Example 1.6. This is the 2-gap decomposition of 143 when n = 2, m = 1:

143 = 2 · 55 + 2 · 13 + 2 · 3 + 1 · 1 = 2 · F10 + 2 · F7 + 2 · F4 + 1 · F1. (1.9)

Similarly, this is the 2-gap decomposition of 143 when n = 2, m = 2:

143 = 1 · 89 + 2 · 21 + 2 · 5 + 2 · 1 = 1 · F11 + 2 · F8 + 2 · F5 + 2 · F2. (1.10)

We can also list 3-gap decompositions for 143. Here is the decomposition when n = 3, m = 1:

143 = 4 · 34 + 1 · 5 + 2 · 1 = 4 · F9 + 1 · F5 + 2 · F1. (1.11)

Here is the decomposition when n = 3, m = 2:

143 = 2 · 55 + 4 · 8 + 1 · 1 = 2 · F10 + 4 · F6 + 1 · F2. (1.12)

Finally, here is the decomposition when n = 3, m = 3:

143 = 1 · 89 + 4 · 13 + 1 · 2 = 1 · F11 + 4 · F7 + 1 · F3. (1.13)

In Section 2, we examine some recurrences for n-gap Fibonacci numbers and discuss how
these relate to the more general theory of PLRS. Then, in Section 3, we prove Theorem
1.5. Finally, in Section 4, we give some concluding remarks and possible directions for future
research.

2. Linear Recurrences with Fibonacci Numbers

We began by looking at decompositions using only every third Fibonacci number; in our
notation this would be a 2-gap Fibonacci sequence with an offset of 2. We choose this offset
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so that our first term is F2 = 1, consistent with the initial conditions in (1.4). This allows us
to begin finding patterns for the general n-gap Fibonacci sequence. In this case, we define

{F(k; 2, 2)}∞k=0 = {1, 5, 21, 89, 377, 1597, . . .}. (2.1)

The sequence in (2.1) can itself be defined recursively.

Lemma 2.1. For k ≥ 2,

F3k+2 = 4 · F3(k−1)+2 + F3(k−2)+2. (2.2)

Proof. We repeatedly use the recursion Fj = Fj−1 + Fj−2 to calculate

F3k+2 = F3k+1 + F3k

= F3k + F3k−1 + F3k−1 + F3k−2

= F3k−1 + F3k−2 + F3k−1 + F3k−1 + F3k−3 + F3k−4

= 3 · F3k−1 + F3k−2 + F3k−3 + F3k−4

= 4 · F3k−1 + F3k−4

= 4 · F3(k−1)+2 + F3(k−2)+2. (2.3)

□

By a procedure analogous to (2.3), we can also generate the following identities, which hold
for all k ≥ 2:

F4k+2 = 7 · F4(k−1)+2 − F4(k−2)+2

F5k+2 = 11 · F5(k−1)+2 + F5(k−2)+2

F6k+2 = 18 · F6(k−1)+2 − F6(k−2)+2

F7k+2 = 29 · F7(k−1)+2 + F7(k−2)+2. (2.4)

Notice that 3, 4, 7, 11, 18, 29, . . . are the Lucas numbers, which have the closed form ϕk +
(−ϕ)−k. Because the golden ratio is defined as ϕ = (1 +

√
5)/2, the Lucas numbers are the

closest integer to ϕk for each k > 1, because
∣∣(−ϕ)−k

∣∣ < 1/2 for k > 1. This motivates the
question of whether every n-gap Fibonacci subsequence can be defined recursively, and then
what decomposition properties they have. Using Binet’s formula (1.2) for Fibonacci numbers,
we can generalize formulas (2.2) and (2.4).

Lemma 2.2. For any n ≥ 2 we have the following generalization of (2.2):

F(k;n,m) = an · F(k − 1;n,m) + (−1)n−1 · F(k − 1;n,m), (2.5)

where an henceforth will denote ϕn rounded to the nearest integer (the Lucas numbers).

Proof. We take advantage of the Lucas numbers and Binet’s formula (1.2) to rewrite each
term on the right side of (2.5):

an · F(k − 1;n,m) =

(
(ϕn + (−ϕ)−n) · 1√

5
(ϕnk−n+m − (−ϕ)n−nk−m)

)
(−1)n−1 · F(k − 2;n,m) = (−1)n−1 · 1√

5

(
ϕnk−2n+m − (−ϕ)−nk+2n−m

)
. (2.6)
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We simplify each component algebraically:

an · F(k − 1;n,m) =
1√
5

(
(ϕn + (−ϕ)−n)(ϕnk−n+m − (−ϕ)n−nk−m)

)
=

1√
5

(
ϕn · ϕnk−n+m − ϕn · (−ϕ)n−nk−m

+ (−ϕ)−n · ϕnk−n+m − (−ϕ)−n · (−ϕ)n−nk−m
)

=
1√
5

(
ϕnk+m − ϕn · (−1)n−nk−m · ϕn−nk−m

+ (−1)−n · (ϕ)−n · ϕnk−n+m − (−ϕ)−nk−m
)

=
1√
5

(
ϕnk+m + (−1)n−nk · ϕ2n−nk−m

+ (−1)−n · ϕnk−2n+m − (−ϕ)−nk−m
)
, (2.7)

and

(−1)n−1 · F(k − 2;n,m) =
1√
5

(
(−1)n−1(ϕnk−2n+m − (−ϕ)2n−nk−m)

)
=

1√
5

(
(−1)n−1 · ϕnk−2n+m − (−1)n−1 · (−1)2n−nk−m · ϕ2n−nk−m

)
=

1√
5

(
(−1)n−1 · ϕnk−2n+m − (−1)1−n · (−1)2n−nk−m · ϕ2n−nk−m

)
=

1√
5

(
(−1)n−1 · ϕnk−2n+m − (−1)n−nk · ϕ2n−nk−m

)
. (2.8)

We now sum and simplify the above, and obtain

an · F(k − 1;n,m) + (−1)n−1 · F(k − 1;n,m)

=
1√
5

(
ϕnk+m + (−1)n−nk · ϕ2n−nk−m + (−1)−n · ϕnk−2n+m − (−ϕ)−nk−m

+ (−1)n−1 · ϕnk−2n+m − (−1)n−nk · ϕ2n−nk−m
)

=
1√
5

(
ϕnk+m +((((((((((

(−1)n−nk · ϕ2n−nk−m + (−1)−n · ϕnk−2n+m − (−ϕ)−nk−m

+ (−1)n−1 · ϕnk−2n+m −((((((((((
(−1)n−nk · ϕ2n−nk−m

)
=

1√
5

(
ϕnk+m + (−1)−n · ϕnk−2n+m − (−ϕ)−nk−m + (−1)n−1 · ϕnk−2n+m

)
=

1√
5

(
ϕnk+m +(((((((((

(−1)−n · ϕnk−2n+m − (−ϕ)−nk−1 +((((((((((
(−1)n−1 · ϕnk−2n+m

)
=

1√
5

(
ϕnk+m − (−ϕ)−nk−m

)
= F(k;n,m), (2.9)

which is the desired result. □
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We can generalize Lemma 2.2 to all n-gap subsequences of the recurrence relation

Gn = Gn−1 +Gn−2, (2.10)

where G1 and G2 are positive integers; to do this we first prove a recurrence relating {Fℓ}∞ℓ=1
to {Gℓ}∞ℓ=1.

Lemma 2.3. If {Gℓ}∞ℓ=1 satisfies (2.10), then for n ≥ 3,

Gn = Fn−2 ·G1 + Fn−1 ·G2. (2.11)

Proof. We proceed by strong induction. The base case will be n = 3, which is verified as
follows:

G3 = G2 +G1 = G2 · 1 +G1 · 1 = G2 · F2 +G1 · F1. (2.12)

As for the inductive step, we assume for all 3 ≤ j ≤ k that

Gj = Fj−2 ·G1 + Fj−1 ·G2, (2.13)

and we can finish the proof by demonstrating that

Gk+1 = Fk−1 ·G1 + Fk ·G2. (2.14)

We can show (2.14) by using (2.13) for j = k and j = k − 1, with the recurrence (1.1):

Gk+1 = Gk +Gk−1

= Fk−2 ·G1 + Fk−1 ·G2 + Fk−3 ·G1 + Fk−2 ·G2

= (Fk−2 + Fk−3) ·G1 + (Fk−1 + Fk−2) ·G2

= Fk−1 ·G1 + Fk ·G2, (2.15)

as desired. □

Now, we can prove our generalization of Lemma 2.2.

Lemma 2.4. For k ≥ 2, if {Gℓ}∞ℓ=1 satisfies (2.10), then

Gnk+m = an ·Gn(k−1)+m + (−1)n−1 ·Gn(k−2)+m, (2.16)

where n, k, m, and an are defined as before, regardless of the initial conditions.

Proof. We can use (2.5) in conjunction with (2.11) to compute

an ·Gn(k−1)+m + (−1)n−1 ·Gn(k−2)+m = an · (Fn(k−1)+m−2 ·G1 + Fn(k−1)+m−1 ·G2)

+ (−1)n−1(Fn(k−2)+m−2 ·G1 + Fn(k−2)+m−1 ·G2)

= (an · Fn(k−1)+m−2 + (−1)n−1 · Fn(k−2)+m−2) ·G1

+ (an · Fn(k−1)+m−1 + (−1)n−1 · Fn(k−2)+m−1) ·G2

= Fnk+m−2 ·G1 + Fnk+m−1 ·G2

= Gnk+m. (2.17)

□

Remark 2.5. It turns out there are alternative proofs to Lemmas 2.2 and 2.4 that rely on the
established generating function theory of multisections. We provide the details in Appendix A.
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For convenience, we restate the definition of PLRS (Definition 1.4), so that we can solidify
the framework to be used in Section 3.

Definition 1.4. A PLRS is a sequence of integers {Hn}∞n=1 with the following properties.

(1) There are nonnegative integers L, c1, . . . , cL such that

Hn = c1Hn−1 + c2Hn−2 + · · ·+ cLHn−L, (2.18)

where L, c1, cL > 0.
(2) H1 = 1 and for 1 ≤ n < L, we have:

Hn = c1Hn−1 + c2Hn−2 + · · ·+ cn−1H1 + 1. (2.19)

Here is a simple example demonstrating how to prove that a sequence is a PLRS, particularly
the 2-gap sequence.

Example 2.6. We can show directly that

{F(k; 2, 2)}∞k=0 = {1, 5, 21, 89, 377, . . .} (2.20)

is a PLRS. Define

{Gk}∞k=1 = {1, 5, 21, 89, 377, . . .}, (2.21)

and check each condition in Definition 1.4.

(1) The first condition is true, because we can take L = 2, c1 = 4, and c2 = 1; then our
recurrence is Gk = 4Gk−1 +Gk−2.

(2) The second condition also holds; because 5 = 4 · 1 + 1, we conclude G1 = 1, and
G2 = 4G1 + 1.

In the next section, we generalize Example 2.6.

3. Decomposition Results

In this section, we restate and prove the main result of the paper, building on the intuition
developed in Section 2. We quote a primary result from [30] that yields the uniqueness of
decompositions for the sequences in Section 2.

Theorem 3.1. (Generalized Zeckendorf’s Theorem for PLRS) Let {Hj}∞j=0 be a PLRS. Then,

(1) there is a unique legal decomposition for each positive integer N ≥ 0, and
(2) there is a bijection between the set Sj of integers in [Hj , Hj+1) and the set Dj of legal

decompositions
∑j

i=1 bi ·Hj+1−i.

We now generalize the result from Example 2.6 to the n-gap Fibonacci sequences, using
Theorem 3.1. Notably, this generalization only extends to odd n due to the (−1)n+1 factor of
the second term in each recurrence relation amongst the list (2.4). Thus, the sequences we
study in the next theorem are of the form {Fnk+m}∞k=0, where n ≥ 3 is a fixed positive odd
integer.

Theorem 3.2. (n-gap Fibonacci recurrence as a PLRS) If n ≥ 3 is odd, then the n-gap
Fibonacci sequence {F(k;n,m)}∞k=0 is a PLRS.

Proof. We consider each condition of Definition 1.4 individually:
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(1) The first condition holds via the recurrence relation (2.5). Because Fnk+1 = an ·
Fn(k−1)+1 + (−1)n−1 · Fn(k−2)+1, we have the following relation for odd n:

Fnk+1 = an · Fn(k−1)+1 + Fn(k−2)+1. (3.1)

Because an is a power of a positive number rounded to the nearest integer, we may
satisfy the first condition of Definition 1.4 with the following parameters:

L = 2n, c1 = an, c2 = · · · = c2n−1 = 0, c2n = 1. (3.2)

(2) Because L = 2, we only need to check the condition (2.19) form = 3. For this condition
to hold, the following needs to be true for all such sequences of odd n:

G3 = an ·G2 +G1 + 1. (3.3)

We can rewrite (3.3) with Fibonacci numbers as follows:

F2n+1 = an · Fn+1 + F1 + 1 ⇒
F2n+1 = an · Fn+1 + 2. (3.4)

The existence of this representation of G3 assures that the proof is complete.

□

Ultimately, this result links together two seemingly unrelated properties: the coefficients of
certain PLRS and the necessary conditions for uniqueness of decompositions. We see that an
acts as the coefficient of the first term of the n-gap Fibonacci recurrence and as the highest
coefficient necessary for an integer decomposition using the terms generated by the recurrence.
The sign of the second term of the recurrence in turn determines whether the integer decom-
positions are unique, and where a positive term corresponds to uniqueness. This naturally
extends to linear combinations of n-gap Fibonacci recurrences, i.e., the recurrences of the
form

Gk = Gk−1 +Gk−2, (3.5)

where G1, G2 ∈ Z+.

4. Conclusion and Future Work

Our method of looking specifically at n-gap Fibonacci sequences has lead us to several
generalizations of Zeckendorf’s Theorem. We were able to connect these problems to the
literature on PLRS by concluding that odd gap Fibonacci sequences are PLRS, and by utilizing
results on the number of decompositions of natural numbers that exist using the elements of
the said sequences. The natural open problem to investigate is to determine whether these
results can be extended to even integers n ≥ 4.

Aside from the even integers case, there are also natural enumeration questions to consider.
We could study the number of decompositions that arise if we remove the restriction placed
by the recursive relationship, but still including the restriction on the number of copies of
each summand. Alternatively, we could remove the restriction on the number of copies and
investigate how to count the resulting decompositions.

Another possible direction is exploring different types of sequences beyond the Fibonacci
numbers, such as skiponacci sequences (Sk = Sk−1+Sk−3), tribonacci sequences (Tk = Tk−1+
Tk−2+Tk−3), and so on, and seeing if we can find potential positive linear recursive sequences
by changing the values of the coefficients. We could also explore trying to extend our work to
cover sequences of the form Gn = αGn−1 + βGn−2, where α and β are arbitrary integers.
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Appendix A. Alternative Proofs of Lemmas 2.2 and 2.4

One can use multisection techniques [18, 28] for the generating functions to obtain alterna-
tive proofs of Lemmas 2.2 and 2.4. The steps are as follows.

The following generating function expansions for Fibonacci numbers and Lucas numbers
are well-known.

f(x, 1, 0) =

∞∑
k=0

Fkx
k =

x

1− x− x2

l(x, 1, 0) =

∞∑
k=0

Lkx
k =

2− x

1− x− x2
. (A.1)

Then by invoking the multisection technique on (A.1), we obtain

f(x, n,m) =
∞∑
k=0

Fkn+mxk =
Fm + (Fn+m − FmLn)x

1− Lnx+ (−1)nx2

l(x, n,m) =
∞∑
k=0

Lkn+mxk =
Lm + (Ln+m − LmLn)x

1− Lnx+ (−1)nx2
. (A.2)

For the special case n = 1 and m = 0 [28], we have that

f(x, n, 0) =
Fnx

1− Lnx+ (−1)nx2
and l(x, n, 0) =

2− Lnx

1− Lnx+ (−1)nx2
. (A.3)

The key realization is that the generating extends to negative integer values for the param-
eters m and n.
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