A Note on a Permutation Statistic

Tamás Lengyel
Occidental College
1600 Campus Road
Los Angeles, CA 90041
USA
lengyel@oxy.edu

Abstract

We study the length of the initial up-down alternating segment of a permutation of $[n]$ selected uniformly at random. It turns out that as n tends to infinity, the expected value and the standard deviation of this statistic converge to small constants.

1 Introduction

Analyzing properties of permutation statistics is a popular subject in combinatorics, cf. Bóna [1]. There has been much recent work on determining and statistically analyzing the length of the longest increasing and alternating subsequences of random permutations, cf. Stanley [4]. A permutation $a_{1} a_{2} \cdots a_{n}$ of [n] is up-down alternating if $a_{1}<a_{2}>a_{3}<a_{4}>\cdots a_{n}$. Let A_{n} denote the number of up-down alternating permutations of $[n]=\{1,2, \ldots, n\}$. André studied these numbers and established their relations to Euler and tangent numbers, cf. Comtet [3, pp. 258-259]. It is well known that $2 A_{n+1}=\sum_{k=0}^{n}\binom{n}{k} A_{k} A_{n-k}$ for $n \geq 1$ with $A_{0}=A_{1}=1$. The first few terms of this sequence are

$$
1,1,1,2,5,16,61,272,1385,7936,50521,353792,2702765, \ldots,
$$

cf. A000111 in the On-Line Encyclopedia of Integer Sequences. For their exponential generating function we have the remarkable exponential generating function identity

$$
\begin{equation*}
A(x)=\sum_{k=0}^{\infty} \frac{A_{k}}{k!} x^{k}=\sec (x)+\tan (x) \tag{1}
\end{equation*}
$$

cf. Comtet [3]. The convergence radius easily follows as well as

$$
\begin{equation*}
A_{n} / n!\sim 2\left(\frac{2}{\pi}\right)^{n+1} \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$, cf. Borwein et al. [2].
We are interested in the initial up-down alternating segments of the permutations. Let X_{n} denote the length of the initial up-down alternating sequence of a permutation of $[n]$ selected uniformly at random, i.e., we set $X_{n}=n$ for an up-down alternating permutation, and otherwise, $X_{n}=2 k$ or $X_{n}=2 k+1$ if $a_{1}<a_{2}>a_{3}<\cdots>a_{2 k-1}<a_{2 k}<a_{2 k+1}$ or $a_{1}<a_{2}>a_{3}<\cdots<a_{2 k}>a_{2 k+1}>a_{2 k+2}$, respectively. Clearly, $1 \leq X_{n} \leq n$ and $X_{n}=n$ exactly if the permutation is up-down alternating. The random variable X_{n} has some surprising properties. We will see in Theorems 1 and 3 that the expected value and standard deviation of X_{n} depends only very slightly on n and the limits of these moments are small constants. Theorem 4 shows that for a large n the probability $P\left(X_{n}=k\right)$ decreases exponentially as k grows while Corollary 2 confirms that $P\left(X_{n}=k\right)$ becomes constant for $n>k$.

2 Main results

Theorem 1. For $1 \leq k \leq n-1$ we have that

$$
\begin{gather*}
P\left(X_{n}=k\right)=P\left(X_{n} \geq k\right)-P\left(X_{n} \geq k+1\right)=\frac{A_{k}}{k!}-\frac{A_{k+1}}{(k+1)!} \tag{3}\\
E X_{n}=\sum_{k=1}^{n} \frac{A_{k}}{k!}
\end{gather*}
$$

and $\lim _{n \rightarrow \infty} E X_{n}=\sec (1)+\tan (1)-1 \approx 2.40822$.
Proof. We use the fact that for any positive integer valued random variable X_{n}

$$
\begin{equation*}
E X_{n}=\sum_{k=1}^{\infty} P\left(X_{n} \geq k\right) \tag{4}
\end{equation*}
$$

We observe that $P\left(X_{n}=n\right)=A_{n} / n$!. On the other hand, determining $P\left(X_{n}=k\right)$ for other values of k seems complicated, however, as it turns out, calculating $P\left(X_{n} \geq k\right)$ for $1 \leq k \leq n-1$ is fairly simple:

$$
\begin{equation*}
P\left(X_{n} \geq k\right)=\frac{\binom{n}{k} A_{k}(n-k)!}{n!}=\frac{A_{k}}{k!} \tag{5}
\end{equation*}
$$

since we can pick k elements for the initial segment in $\binom{n}{k}$ ways and place them in up-down alternating order in A_{k} ways, while the other $n-k$ elements can be put in arbitrary order. Identity (5) also holds for $k=n$. Now (5) and (4) imply identities (3) and

$$
E X_{n}=\sum_{k=1}^{n} \frac{A_{k}}{k!}
$$

The limit follows by the exponential generating function (1).
Theorem 1 implies the somewhat surprising
Corollary 2. The probability $P\left(X_{n}=k\right)$ does not depend on n as long as $n>k$.
The following theorem is straightforward.
Theorem 3. We set $B(x)=(A(x)-1) / x$. For the standard deviation of X_{n} we have

$$
\sigma\left(X_{n}\right)=\left(\sum_{k=1}^{n-1} k^{2}\left(\frac{A_{k}}{k!}-\frac{A_{k+1}}{(k+1)!}\right)+n^{2} \frac{A_{n}}{n!}-\left(E X_{n}\right)^{2}\right)^{1 / 2}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sigma\left(X_{n}\right) & =\left(\left(A^{\prime \prime}(x)+A^{\prime}(x)\right)-\left.\left(B^{\prime \prime}(x)+B^{\prime}(x)\right)\right|_{x=1}-\left(E X_{n}\right)^{2}\right)^{1 / 2} \\
& \approx 2.09958
\end{aligned}
$$

The next theorem quantifies $P\left(X_{n}=k\right)$ for any $k \geq 4$ and sufficiently large n.
Theorem 4. For a large n and $k<n$, the probability $P\left(X_{n}=k\right)$ decreases exponentially as k grows. More precisely, for $k \geq 4$ and a large enough n, we have that

$$
P\left(X_{n}=k\right) \approx 2\left(\frac{2}{\pi}\right)^{k+1}\left(1-\frac{2}{\pi}\right) .
$$

Proof. By the asymptotic result (2), the exact distribution (3) and some numerical calculation show that the absolute difference between $P\left(X_{n}=k\right)$ and its approximated value is less than 10^{-3} for $k \geq 4$.

References

[1] M. Bóna, Combinatorics of Permutations, Chapman \& Hall/CRC, 2004.
[2] J. M. Borwein, P. B. Borwein, and K. Dilcher, Pi, Euler Numbers, and Asymptotic Expansions, Amer. Math. Monthly 96 (1989), 681-687.
[3] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., 1974.
[4] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.

2010 Mathematics Subject Classification: Primary 05A05; Secondary 05A15, 60C05.
Keywords: alternating permutation, generating function, combinatorial probability.
(Concerned with sequence A000111.)

Received July 28 2019; revised versions received August 16 2019; August 19 2019. Published in Journal of Integer Sequences, August 192019.

Return to Journal of Integer Sequences home page.

