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Abstract. We prove a fairly general convergence criterion for sequences satisfying a linear
recurrence (defined by an infinite triangular matrix). We prove that every sequence of
positive numbers satisfying a nearly convexr linear recurrence with finite retardation and
active predecessors converges to a positive limit. — Informally, near convexity means the
coeflicients are nonnegative and the sum of coefficients in each equation is approximately 1;
finite retardation means low order terms have little weight; and active predecessors mean
that the immediate predecessor carries a weight greater than a fixed positive constant. — We
present an application to the asymptotic number of not necessarily maximal chains in the
partition lattice. The coefficients of the corresponding recurrence are the Stirling numbers
of the second kind.

AMS 1980 classification numbers: 40A05, 11B37, 05A15, 06C10, 11B73

1. Introduction

The use of recurrence relations is one of the classical methods in combinatorial enumeration.
Some general techniques, such as the generating function method, are commonly used, and
ad hoc methods are known to handle specific recurrences. For general background, we refer
the reader to [15], [6], [11], and [2]. Combinatorial applications can be found e.g. in [1],
(3], [4], [10], and [16]. An important application area of these methods is the analysis of
algorithms (cf. e.g., [5], [6], [7], [8], [11], [15], and [17]).

Very seldom does one find explicit closed formula solutions to enumeration problems. It is
more common that the generating function can be determined on the basis of functional
equations derived from a recurrence relation. There are remarkable examples where these

methods, in combination with complex function techniques, lead to asymptotic estimation
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of the coefficients of the generating function ( [13], [14]).

In some cases, however, generating function techniques do not seem to be particularly help-
ful. One case in point may be the number Z(n) of (not necessarily maximal) chains in the
partition lattice. Lengyel [9] found an explicit function f(n) such that ¢, f(n) < Z(n) <
c2f(n) holds for every n (c1, co are positive constants).

In this paper we give a fairly general convergence criterion for sequences defined by a linear
recurrence.

As an application we deduce that the quotient Z(n)/ f(n) tends to a positive limit. (However,
we are not able to tell the value of that limit.)

2. The convergence criterion

We shall consider infinite sequences of real numbers x(n) satisfying the linear recurrence

given by a (truncated) infinite triangular matrix C' = {c(n, k)} of coeflicients:

(2.1) c(n,k)z(n—k)=z(n) (n > N).
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This recurrence is thus assumed to hold for sufficiently large n only. For convenience we
shall set ¢(n, k) = 0 for k > n. Throughout this paper, ¢(n, k) will be non-negative.
Theorem 1 below gives a fairly general convergence criterion for sequences satisfying this
linear recurrence.

First we have to introduce some additional terminology. We call the recurrence (2.1) convex
if its coeflicients are non-negative and its row sums are equal to 1. We call the recurrence
(2.1) nearly convex if its coeflicients are non-negative and its row sums are approximately

equal to 1 in the sense of /;-norm. More precisely, for sufficiently large n, let
(2.2) Yo=-14Y cnk) (n=N,N+1,.).
k=1
We call (2.1) nearly convez, if
n=N

LEMMA 1. Letz(n) be asequence of positive reals, satisfying a nearly convex recurrence.
Then there exist positive constants ci, ce such that 0 < ¢; < x(n) < c2 for every n.
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PROOF. Let a' and a~ be the positive and negative parts of the real a, ie. a™ =
(a+|a])/2 and a= = (a — |a|)/2, respectively.
Let A =max{z(n):1<n < N}. Then an induction shows that

7

z(n) < A i 1+%%)  (n=N)
=N

and the right hand side is bounded according to condition (2.3).
Let B = min{z(n): 1 <n < N}. An analogous argument shows that

—8

lim z(n) > B

n—oo

1+v7)>0 1

I
2
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The following quantity measures the degree of retardation of the recurrence (2.1), i.e. the
direct effect of low index terms x(i) on z(n) in (2.1):

k 00
(2.4) €nk =1+ — Z c(n,i) = Z c(n,i).
i=1 i=k+1

We say that the recurrence (2.1) has finite retardation if there exists a constant K such that

(2.5) Z Em+tk,k < K
k=0

holds for all sufficiently large values of m.
We say that the recurrence (2.1) has active predecessors if there exists a positive constant ¢
such that ¢(n,1) > ¢ for every sufficiently large n.

THEOREM 1. Let x(n) be a sequence of positive reals, satisfying a nearly convex re-

currence with finite retardation and active predecessors. Then the sequence z(n) converges

to a positive limit.

DISCUSSION. We have to comment on the assumptions.

The finite retardation condition is quite natural. For instance, it is automatically satisfied,

if the coefficients are bounded and each x(n) is expressed in terms of a bounded number of
its predecessors.

Consider now the divergent sequence given by the recurrence z(1) = 1, z(2) = 2, z(n) =
x(n—2) (n > 3). This recurrence is convex and has finite retardation; it demonstrates that
the condition of active predecessors cannot be omitted.

The necessity of the near-convexity assumption under certain conditions is the content of
the following partial converse to the Theorem.
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PROPOSITION. Assume the monotone sequence {z(n)} converges to a positive limit. If

{x(n)} satisfies a recurrence with nonnegative coefficients and finite retardation, then the

recurrence must be nearly convex.

PROQOF. By definition,

oo

z(n)y, = —x(n) + Z z(n)e(n,i) = (x(n) — x(n — i))c(n, i).

=1

(Recall that ¢(n,i) = 0 for ¢ > n.) This implies that v, has constant sign (positive if x(n)

increases). Furthermore, slightly rearranging, we find

2(n)yn =Y i(w(n —j)—a(n—j—1))e(n,i) = (x(n—j)—z(n—j—1))e,;.
i=1 j=0 j=0
Consequently
>y =) (z(m) —x(m 1)) >, €m-ti.j-
n=N m=1 j=max{0,N—m}

The right hand side converges because of the finite retardation condition and the mono-
tonicity of the z(n). Consequently, the series Y >~ \ (n)¥, is convergent; and therefore the
series >\ is also convergent. i

We conclude this discussion with the observation that every monotone sequence x(n) of reals,
converging to a positive limit, satisfies a nearly convex recurrence with finite retardation
and active predecessors. Indeed, set ¢(n,1) = x(n)/x(n — 1), and ¢(n,i) = 0 for i # 1. The
conditions are easily verified.

A more significant example of a recurrence satisfying these conditions will be given in Sec-
tion 3.

In view of these comments, the following question seems natural. Does every sequence of
positive reals, converging to a positive limit, satisfy a nearly conver recurrence with finite
retardation and active predecessors?

PROOF OF THEOREM 1. First we observe that for every n, 0 < ¢; < z(n) < ¢y for

some constants ¢y and cs, according to Lemma 1.

Another preliminary observation is the following.

CLAIM 1. There exists a positive constant K; such that for every sufficiently large m,

(2.6) E(m)= [[ (1-22) > K,
j=m+1 149
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PROOF. We may assume that 1 > v; > —1/2 for j > m+ 1. By the “active predecessors”
condition, we may assume c¢(j,1) > ¢ > 0 for all j > m + 1. It follows that

j—m

S (i) > L

— T+

_ €j.5—m _ 1
Lty 14

> c/2.

Noting that 1 > 1 — 2 > ¢/2 > 0 implies 1 — 2 > exp (—c’x) for some constant ¢’ > 0, we
infer that

E(m) > exp(—c - Z Ej’j_m) > exp(—2¢ - Z €jj—m) > exp(—2¢'K) =: K;.
j=m+1 1+, j=m+1

In the last inequality we made use of the “finite retardation” condition (2.5). This concludes
the proof of Claim 1.

Next we outline the strategy of the proof of Theorem 1.
Let M be an arbitrary positive real such that

0< M < lim x(n).

n—oo

We shall define an increasing sequence of integers n; and an increasing sequence of non-
negative reals (3; such that n; — oo and §; — 1 (as i — oo) and for every ¢ > 0 and
n>n;

(2.7) x(n) > B; M.

This will imply lim,, .. x(n) > M.
Since this will hold for any M < lim,, .o #(n), we shall have

lim z(n) = lim,_ . z(n) = lim,_ z(n)

N —00

proving Theorem 1.

We define 3; as follows. Since we are at liberty to increase the value of N a finite number
of times, let N be an integer greater than all the bounds implied by previous “sufficiently
large” statements, including Claim 1. Let I' = H;’;N(l + 7, ) > 0. Set

B =1—(1—-KI'/2),

where the (small) positive value K is taken from Claim 1.

We set ng = 0 and define the n; inductively for i > 1. For n > k, set A(n, k) = €nn—r —7,, -
For every k, the non-negative series Y. - . A(n, k) converges by the conditions of near con-
vexity and finite retardation. Given n;, let us select n;11 > n; such that

(2.8) z(niv1) = M,
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and

(2.9) > Alnymg) < (1B KT /2.

n=n;41

In addition, we select nq such that n; > N.

CLAIM 2. With these choices of the sequences n; and ;, inequality (2.7) holds for every
1> 0 and n > n,;.

PROQF. Observe that By = 0, so for ¢ = 0, inequality (2.7) holds vacuously for every n.
We proceed by induction on i. Suppose inequality (2.7) holds for a particular i; we prove it
for ¢ + 1.

For m > n let us set

= min{z(n),...,x(m)}.

The inductive step is based on the following observation. For n > n;,1, the recurrence (2.1)

implies

x(n) >{c(n,ax(n—1)+...+c(n,n —nip1)x(ni+1) }+

+ {c(n,n—nip1+ Dax(ni1 — 1)+ ... +ec(n,n—n;)z(n;)}
and therefore
z(n) > (1+ym — En,n—mﬂ)xzijll + (En,n—mﬂ — €n,n—n; ) BiM.
A simple rearrangement yields

. € s
> (ap ) = BM) (147, ) (1 — =—=2L) — BiM (€nn—n; — Y

where for k > j

(2.10) D(k,5) = (1+7;)(1 - ikf;;)

From this we obtain for n > n;;1 by induction on n that

n

(211)  @(n) = BiM > (z(nip1) = BM)  [[ Thni) = BM- Y Alk,n).

k=n;i1+1 k=n;i1+1
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Consequently, for n > n;+1 we have (noting that n;1; > N hence Claim 1 applies)

2(n) = BiM > (M — B;M)TE(n; 1) — B;M - > A(k,ny)
k=n;y1+1

> M1 —3)FKy — M(1—3;)I'K,/2

=M1 = 3;)IK1/2 = M(Bi+1 — Bi);
hence x(n) > B;11 M, as required. This completes the proof of Claim 2 and thereby the
proof of Theorem 1. il

It would be of interest to know how fast the sequence z(n) converges. If x(n) converges

rapidly then one can get an estimate on the unknown limit by numerical calculations.

3. An application

In this section we present an application of Theorem 1 to the partition lattice. In [9] we
studied the number Z(n) of the not necessarily maximal chains from 0 to 1 in the partition
lattice Eq(n) of an n-set. The lattice Eq(n) has minimal element {{1},{2},...,{n}} and

maximal element {{1,2,...,n}}. It is easy to see [9] that Z(n) satisfies the recurrence
n—1

(3.1) Z(n) =Y _ Sm,k)Z(k), n>2,
k=1

where S(n, k) denotes the Stirling number of the second kind, i.e. the number of partitions
into k£ nonempty parts of a set of n elements.

One can easily derive the functional equation
(3.2) 2Z(x) =Z(" —1)+x

for the (divergent) exponential generating function

oo xn
(3.3) Z(x) =) Z(n)—,
n=1
but we were unable to make use of this formula.
We list the values of Z(n) for n <12

n =123 4 5 6 7 8
Z(n)=11 4 32 436 9012 262760 10270696

n = 9 10 11 12
Z(n) = 518277560 32795928016 2542945605432 237106822506952
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These values have been obtained using equation (3.1) and the MACSYMA system. Equa-
tion (3.2), however, has led us nowhere, therefore we have chosen another approach in [9]
to analyze the asymptotic order of magnitude of Z(n). Let

(3.4) f(n) = (mH2(2In2) "p~t-n2)/3,
In [9] (Theorem 1.1) we have shown that there exist positive constants C; and Cy such that

(3.5) Cr < Z(n)/f(n) < Cs.

Here we prove the following stronger version.

THEOREM 2. The following limit exists:

(3.6) lim Z(n)/f(n) =C,

n—oo

where C' is a positive constant.

REMARK. Although our proof of Theorem 2 does not suggest any value for the limit, we
note that numerical evidence appears to suggest that it is slightly greater than 1.

n = 1 2 3 4 5
Z(n)/f(n) = 1.38629 1.12780 1.14468 1.13061 1.12426
n = 10 50 100 150 200

Z(n)/f(n) = 1.11147 1.10123 1.09996 1.09953 1.09932

We propose, as an open problem, the approximate calculation of the limit.

PROOF. We will use Theorem 1. Let us consider the normalized form Z*(n) =
Z(n)2"/(n!)? instead of the rapidly growing Z(n). The function Z*(n) satisfies the re-

currence

(3.7) Z*(n) = a(n, k) Z*(n — k),

3
I

e
Il

where a(n,k) = S(n,n — k)2%/[n]? and [n] = n(n —1)...(n — k+1). We set y(n) =
(In2)~"n~1=M2/8 a(n) = Z*(n) /y(n) = Z(n)/ f(n) and c(n, k) = a(n, k)y(n—k)/y(n).
With this notation, the positive sequence x(n) satisfies the recurrence (2.1) for n > 2 (so we
may set N = 2). We shall verify that the recurrence (2.1) given by these coefficients satisfies
the conditions of Theorem 1. This will guarantee that a positive limit lim,, .o, Z(n)/f(n) =
lim,, oo = Z*(n)/y(n) exists, as required.

We shall need three lemmas from [9]:
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LEMMA A. (Lemma 2.2, [9])

(3.8) i a(n, k) y(n — k) = y(n) (1 + O(1/n?)).

LEMMA B. (Lemma 3.1, [9]) There is an absolute constant C” such that for k* < n

, 1 K2
<C o

1

(3.9) =

a(n, k) —

(Actually, Lemma 3.1” in [9] states a stronger result, which includes the second term of the
asymptotic expansion. We shall not need this finer estimate here, but it should be pointed
out that we use it implicitly through Lemma A, the proof of which depends on it.)

LEMMA C. (Lemma 3.2°, [9]) For each k in the interval 3Inn/Inlnn < k <n — 1, we

have

(3.10) a(n, k) < 1/n.

We can easily check condition (2.3) of Theorem 1. Clearly,

(3.11) x(n) = i c(n,k)x(n —k).

From Lemma A we have

]
.

c(n, k) =14
1

e
Il

where «y, = O(1/n?). The coefficients being non-negative, this proves that our recurrence
is nearly convez.

Using the definition of y(n), we can express ¢(n, k) as

~ Ja(n,k)In2)*(1 —k/n)f, fork:1<k<n-1
(3.12) c(n, k) = {07 for k> n

where f = —1 — (In2)/3 = —1.231.... In particular, lim,,_, ¢(n,1) = In2 > 0, verifying
the active predecessors.

To complete the proof, we have to verify the finite retardation condition (equation (2.5)).
We have to prove that the sums

Zem"_kk_zz m—f—k"L

k=0i=k+1
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(m > N) are uniformly bounded.

We observe that for some constant C; we have a(n,k) < C; for every n,k; furthermore
f > —2; hence ¢(n,i) < Ci(In2)*(1—i/n)"2 < C1(In2)*(i +1)? (because either n > i+ 1 or
c(n,i) =0).

Consequently,

71—

1 o)
c(m+k,i) <Y Ci(In2)%i(i + 1)°.
=1 k=0

=1

The right hand side of the last equation is finite and independent of m. N
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