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Abstract

Optimization problems hold an extensive and honored position in cre-
ative problem solving. Often they can be reconceptualized so that the goal
is to minimize the distances between mathematical objects of certain types.
Frequently, for such problems, the standard techniques of calculus cannot
be efficiently applied. Other optimization approaches, such as linear pro-
gramming, may work, but without delivering insight into the problem or its
solution. For the creative problem solver, these problems call for solutions
that are lesser known and more unorthodox, even to the extreme of stepping
outside of mathematics and allowing mechanical processes to provide the
solution.

We look at four classes of problems each, more or less, resistant to solution
by routine techniques of calculus alone. In Sections 1 and 2 we search for
a best representative point for a point set. Finding a best fitting line for
a point set is the topic of Section 3. In Section 4 we identify the integer
lattice points closest to the origin by the l;-norm, when constrained to a
line. In each case, a sum of distances is to be minimized. Many examples of
independent interest and broad appeal are also provided.

Our techniques arsenal draws from geometrical reflections and symme-
tries, repeated use of convex piecewise linear functions, Diophantine equa-
tions, the Euclidean algorithm and mechanical processes.

1 Finding an optimal location or representation

Finding optimal locations has been a popular subject in mathematics. There is
extensive literature on the subject, in fact, over 3000 references are listed in [5].
We start with the one-dimensional version of the least absolute difference problem.
Given a data set of real numbers, we want to find a value to represent the whole
set. We consider two variants: one with equal and the other with given arbitrary
positive weights.

Problem 1 Let x1,x2,...,x, be n real numbers. Find an a such that
n
HZIII; |x; — al (1)
is achieved.

All statistics students should know that the answer is the median of the values
T1,%2,...,T,. When ordered from smallest to largest the median is defined to be



2 G. Tollisen and T. Lengyel

the middle point if n is odd and the arithmetic mean of the two middle points if
n is even. That is not to imply that the median is the only solution, for when n is
even, as we will see later, any value between the two middle ones is a solution.

A calculus based proof was presented by Cramér for any one-dimensional
distribution in 1946. A pedagogically more instructive and simpler approach (e.g.,
[6]) can be given in the case of a distribution with probability mass located at
a finite number of values. As Problem 1 is a special case of Problem 2, we will
present only the solution to the latter one.

Problem 2 Let z1 < 23 < ... < x, be n real numbers. Given the positive weights

Wy, Wa, ..., Wy, find an a such that the minimum of
n
D(a):D(a;wthw"?wn):Zwilfﬂi—a‘ (2)
i=1

18 achieved.

Note that if x; = x;41 then we can simply join these points into one with combined
weight w; + w;y1.

Remark 1 The function D(a) is non-negative, continuous and piecewise linear,
so its minimum is attained at one of the points where the linear segments are
joined, i.e., at some xy,.

Solution: The problem can easily be reduced to another one: find the minimum m
such that w/, = 7" w;/ >, w; > 0.5. The optimum value a = z,, is sometimes
referred to as the weighted median of the values x; with weights w; (apparently so
named by Edgeworth in 1887 [2] in a slightly different context). To see this we need
only to check the changes in the D(a) as a moves from the left of 21 to the right of
Zyn. In fact, a change from x = a to © = a+h, h > 0, within the interval [z, Zm41)
results in the change D(a+h)—D(a) = h(37" wi—Y 7, .1 w;), because x moves
away from the first m points and towards the others. When m is increased by 1, one
term is transferred from the second sum to the first, increasing the proportionality
between the changes. Observing that the continuous D(a) decreases provided that
D(a+h)—D(a) <0, we conclude the proof by increasing a until D(a+ h) — D(a)
ceases to be negative.

Of course, a more calculus minded person can take the derivative of the
continuous function D(a) at all points except for critical points x;,1 < i < n.
At the points where it exists, the derivative eventually changes from negative to
positive, and therefore, a point a minimizing D(a) can easily be found. |

The following remark provides us with a simple answer to many problems involving
criterion (2).

Remark 2 If there exists an m such that w), = 0.5 then any point within the
interval [2,,,Zm+1] can be chosen for a. Otherwise, we have to select a = x,,. If
there is a dominant weight with w,,/ Z?:o w; > 0.5 then a = z,,.
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We will see that Examples 1, 2, 3, and 6 can be reduced to Problem 2, i.e., the
weighted one-dimensional least absolute difference problem. The following example
appears in [6].

Example 1 If asked where they would stand and wait for the next of three eleva-
tors unequally spaced along the wall, many students would choose to stand at the
mean position. They do not recognize that standing at the mean minimizes the
average squared distance and that the minimal average distance to the elevator is
in fact achieved by standing at the median. If one’s job is to carry heavy objects
to elevators, one cannot ignore the distance from the initial point of arrival into
the elevator area to the optimal place to wait. In our one-dimensional model, the
point of arrival can either be to the left or right of, or somewhere in between the
outermost elevators. Where should one stand in order to minimize the total dis-
tance, which we now redefine to include the additional distance from the point of
entry to the point where one will wait?

“Surprisingly perhaps,” as noted in [6], “the answer is to remain at the point of
entry and to not move at all! ... one should stay put! ... In the case of an entry
point that is to the left of the leftmost elevator, waiting anywhere between it and
this elevator does not add unnecessary travel. A symmetric argument applies to
entering the right side of the room.”

The reason for the answer lies within Remark 2. In the general case of n
elevators, the n trips are composed of 2n distances to be traveled: one each between
the entry and the waiting point and from the waiting point to each elevator. The
entry point comes with a weight of n.

Later, we will return to another nice example (Example 5) extending the
previous one and showing a transition from the (weighted) median to mean.

Remark 3 In the case of equal weights we get w} = i/n, thus a can be selected
to be the median of the data set. The previous remark on the possibility of several
optimum positions applies and therefore, we can pick any value between the two
middle ones if n is even.

We can view any value a for which the minimum is achieved in (1) or (2) as an
optimal representation of the data set (with or without weights) with respect to
the I;-norm. This optimization problem can be generalized to R2.

The following example [15, Problem #469 on Siting a Central Depot] appears
to be two-dimensional but in fact, it can be viewed as a nice combination of two
instances of Problem 1 or, in the weighted version, Problem 2.

Example 2 The street plan of a city consists only of straight streets intersecting
at right-angles, and at an odd number of the junctions there are kiosks. Figure 1
gives, as an example, a plan with ten streets and three kiosks. The occupants of
the kiosks now wish to draw their wares from a common central depot. How should
this be located so as to give a minimum total length for a single trip to the depot
from each individual kiosk. The breadths of the streets may be neglected.
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Figure 1

The solution can be easily described by a vector whose coordinates are formed
by the medians in the corresponding directions. The solution can be generalized
to the weighted version with an arbitrary finite number of points by taking the
weighted medians. The same approach also works in higher dimension, for the Iy
or “taxicab” distances can be separated into one-dimensional absolute differences.

2 The two-dimensional version of the weighted
least absolute difference problem

When the [; distance in Example 2 is replaced by Euclidean distance, we have the
following restatement of Problem 2 in two dimensions.

Problem 3 We replace x; and a in Problem 2 by the plane vectors v; = (z;,y;)
and a €R?, respectively. Find an a such that the minimum of

n
D(a) = D(g;wy, wa, ..., wn) = Y _ wilv; — a (3)
=1

is achieved.

This problem appears in the works of Steiner, Fermat, Weber, Torricelli, and Cav-
alieri. The optimal point is variously named after one or more of the mentioned
people while the problem is often referred to as the Fermat—Weber location prob-
lem.

In passing to the next higher dimension, we generally lose the ability to
reduce the problem to its one-dimensional form. (It is the sum of the squared
FEuclidean distances that can be separated into two one-dimensional problems, and
is minimized by the center of mass. But see Example 3 below for an interesting
and instructive exception.)

Furthermore, it is noteworthy that, unlike the one-dimensional version in Prob-
lem 2, the solution to Problem 3 is always unique, provided that the problem is
indeed two-dimensional, in the sense that the points v, are not collinear. For, if
there were two distinct solutions, say a; and a,, then D(a) would be constant on
the line segment a@;a, joining the solutions and thus D(a) would have a directional
second derivative equal to zero in either direction along the interior of this seg-
ment. This is because D(a) is a convex function, since it is the sum of the convex
functions w;|v; — a|. Now for each 4, by virtue of its convexity, the directional sec-
ond derivative of w;|v; —a| is nonnegative in any direction at each point where it is
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defined, and equals zero precisely when evaluated at a point on and in a direction
along any line passing through v,. (Visually, the intersection of any vertical plane
and the cone w;|v;, — a| is the upper half of a hyperbola, except when the plane
passes through the axis of the cone.) Thus, for the directional second derivative of
D(a) to equal zero, the directional second derivative of each summand w;|v; — a|
must equal zero, and thus all of the points must lie on the line @;a,.

No general technique is known to deliver a solution to this problem in closed
form. Typically, the unique point that minimizes D(a) is found numerically, for in-
stance, by a method of deepest descent modified in order to account for the points
where D(a) is not differentiable, i.e., the points v,. (If in the process of deepest
descent, we land on such a v; for some j, we calculate the gradient V.D*(a) of the
modified function D*(a) = 37, ,; wilv; —al. If [VD*(v;)| < w; then the minimum
occurs at v;. Otherwise, we continue in the direction of VD*(v;).) Nature can
perform the process of steepest descent as well, if the reader is willing to idealize
nature. From an initial location, we allow a block to slide down the surface graph
(z, D(z)), while applying just enough friction to the block so that its speed is in-
finitesimal throughout the process. The infinitesimal speed removes kinetic energy,
and thus, the block slides in the direction that most rapidly decreases potential
energy.

The Fermat—Weber problem can be solved similarly in higher dimensions
as well by deepest descent techniques such as the popular Weiszfeld (Vézsonyi)
iterative method and its modifications.

We present two examples of Problem 3 with two different outcomes. The first re-
duces to the one-dimensional case but the second does not. However, a mechanical
analysis that we refer to as the “Steinhaus method” can be applied to both.

Example 3 [14, p. 172] The U.S. Chess Federation is planning a tournament
for all the Grandmasters in the country. It wants to locate the tournament so
the total distance traveled by all players is a minimum. More than half of the
Grandmasters live in New York City. Can you prove that the best site to hold the
tournament is in New York City regardless of the locations of the other players?
(Assume that New York City is a point, that the U.S. is flat, and the players
always take direct routes and never get caught in New York traffic.)

The answer is yes. Before explaining this somewhat surprising result and why it
reduces to the one-dimensional case, we include as our second example a vintage
problem where no position is assigned a majority.

Example 4 [12, pp. 113-6] Three villages are to build a common school. In
order to reduce as far as possible the total time spent by pupils in traveling to
school, they have to find an appropriate spot for the location of the school. They
have, for instance, 50, 70, and 90 children, respectively.

We illustrate the Steinhaus method by the following
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Solution to Example 4 [12]: “Stretching out the map of the district on a table,
we make holes in the table where the villages are, pass three strings through the
holes, tie the upper ends into a knot, and weight the lower ones with 50, 70, and
90 ounces, respectively. The school should be built where the knot is caught.”

The above solution is also based on the concept of potential energy. The physical
system is in equilibrium if its potential energy is minimum. Since the total length
of the strings is a given constant, this minimum is achieved if a minimum length
of the strings is horizontal in the case of equal weights as in the previous example.
A similar argument applies to the situation of unequal weights.

While not intending to discourage the enthusiastic hole driller, this technique
clearly works for an arbitrary number of holes. The above physics inspired idea
also can be applied to solve other geometric problems (cf. [12] and [13]).

Now we return to the chess problem and readily obtain a

Solution to Example 3 by the Steinhaus method: It is easy to see that if one
village has more than 50% of the students then this solution will move the knot
to that village. The same applies to the best location for the tournament with the
majority of players living in one city. [ |

We can also find an analytical solution to the chess problem using Problem 2.

Alternative Solution to Example 3: Let v, be the location with the majority of
players. Assume that the best tournament location is at @ # v;,. We take the line
l through a and v;,. Now we project every point onto line /. The one-dimensional
solution (cf. Problem 2 and Remark 2) guarantees that we can improve D(a) by
moving a closer to v, on line [.

In his book [12], Steinhaus translates the mechanical method to its vector form
for 3 points and arbitrary weights. It is based on the notion of reciprocal figures of
Cremona (or scheme of forces) from the theory of graphical statics. An auxiliary
triangle is constructed with sides 50, 70, and 90. The claim is that the school
should be built at the point from which the villages are visible in directions that
form the same angles as the exterior angles of the auxiliary triangle. Despite its
beauty, this method has a limited scope as it often fails to solve the problem;
for example, when the sides do not satisfy the triangle inequality (which happens
precisely when there is a majority).

It is worth making a few comments on the version with equal weights (equiv-
alent to the unweighted version). For equal weights w; = w,i = 1,2,...,n, with
n = 3 and 4 we could use purely geometrical arguments without auxiliary triangles.

For example, if the n = 3 points form an acute triangle then the auxiliary
triangle gives the optimal solution at point P with the property that each side
spans a 120° angle when viewed from P. However, this can also be demonstrated
by a clever proof involving rotation. Assume that the locations are represented by
the vertices A, B, and C of the AABC (labeled in the clockwise direction) and
that the optimal point is P. We rotate the AAPC around point A through 60° in
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the clockwise direction to obtain the AAP’'C’. It is easy to see that both P and
P’ must be points on the line C'B. It follows that ZAPB = 120° and similarly,
/APC = /ZBPC = 120°. For obtuse triangles the optimal point is found at the
vertex with the obtuse angle.

The solution is even simpler in the case of n = 4. The triangle inequality,
applied to triangles formed by the diagonally opposite vertices and the solution
point, shows that for a convex set the optimal solution is given by the intersection
of the diagonals. By a similar argument, for a concave quadrilateral the point with
the concave angle provides the optimum point.

The location problem (Problem 3) asks for a network of minimum total length
connecting all points with the help of a single extra point. It can be generalized to
the so called Steiner tree problem in which we allow the addition of an arbitrary
number of points rather than just one to find the shortest network connecting
all points. Conveniently, the Steiner problem can also be solved by nature. Place
upright pegs representing the points between two transparent parallel plates. Dip
the model into a soap solution and remove. The surface tension of the soap film
formed settles at the stable equilibrium by minimizing the area of the film. Since
the distance between the surfaces is constant, the film will also minimize the total
distance, forming Steiner points in the process.

Now we return to a variation of Example 1 in which Steinhaus’ approach is used
to find the optimum solution. Furthermore, we derive some intriguing aspects of
the optimum solution by analyzing the forces involved at equilibrium.

Example 5 Suppose we modify Example 1 by placing all three elevators along
one wall of a corridor and requiring our passenger to wait along the opposite wall.
We assign the weight w; to the ith elevator to reflect, say, how frequently it is
being used. For instance, in Example 1 the elevators have weight 1 and the entry
point has weight 3. How do we locate the optimum position for the passenger?

We prepare to apply the mechanical approach by reflecting the three elevators
across the opposite wall, and dividing the weight of each elevator equally with its
own reflection, increasing the total number of locations to six. If one applies the
Steinhaus method to the six locations, the knot will lie along the opposite wall
by symmetry, and the total weighted distance will be minimum and equal to the
total weighted distance for the original problem.

We continue for any number of elevators. The components of the vector forces
applied at the knot parallel to the corridor walls must equal zero at equilibrium: 0 =
> w; sin ;, where 0; is the signed angle according to the righthand rule made by
the vector force corresponding to the ith elevator with respect to a perpendicular
to the walls. The result is a (sort of) Snell’s law. (In fact, Snell’s law can be
derived by defining, as usual, the path taken by a light ray through the interface
of two transparent media as the path of least time. Then, the path taken by the
light between two points separated by the interface is just the path of minimum
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weighted distance from a point on the interface to the two points, where the weight
for each point is the reciprocal of the velocity of light in the medium occupied by
the point. Reflecting one of the points across the interface reduces the situation to
our modified elevator problem with two elevators.)

The limiting cases for the width [ of the corridor are particularly interesting.
As | — o0, h; ~ | where h; is the distance between the ith elevator at location x;
on the wall and the optimum point on the opposite wall. Then,

0:l~2wisin9i:—Z-ZwimiT_iaz—zh%~wi(mi—a)~—2wi(xi—a)

where ¢ is the location of the optimum point projected onto the wall occupied by
the elevators. Thus in this case, the limiting value of a is the weighted average of
the locations of the elevators.

When [ = 0, the problem reduces to Problem 2 with the optimal position
being the median. As highlighted in Remark 2, when w/, = 0.5, the optimum
position is not unique, and in fact, any position between z,, and x,,1 can serve
equally well. However, by using a second order argument, we can see that allowing

l to approach zero selects a unique optimum position with a curious physical

2
interpretation. We let ¢; = 7 —|0;| and observe that, cos ¢; —1 ~ —% ~ —ﬁ
as I — 0. Then a rewriting of Snell’s law gives us

1
0= 2R E sign(z; — a)w; cos ¢;
1 . 1 .
=5 E sign(x; — a)w; + 7 E sign(x; — a)w;(cos ¢; — 1)

1 . 12 1 sign(z; — a)
~ 0ty ) senes >‘“< 2<—>) SR DDy

Thus, in the case w/, = 0.5, if a positive charge of measure w; were placed at
location z; for each 4, then the limiting position a that minimizes the total weighted
distance is the stable equilibrium position of a positive charge between positions
Ty and Tppi1- [ ]

Note that if we replace the ly-norm (in the above setting) by the {;-norm then the
optimum is always on the far side across from the weighted median.

We consider another problem which, though dealing with a best fitting line, a topic
covered in Section 3, can also be reduced to Problem 2. This example is a restricted
version of Problem 5 of Section 3, as we look for a least absolute deviation line
which goes through the origin.

Example 6 For given points (z;,y;)€R?, 1 <i < n, find min,, Y ;—, [mz; — y;|.

Note that any point with a; = 0 contributes a fix |y;| to this sum, so it can
be ignored. Therefore, we consider min,, Y ., |z;||m — y;/z;| with z; # 0,1 <
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i < n. This problem is a special case of the weighted one-dimensional problem
(Problem 2) with weights |z;| and data points y;/x;,i = 1,2,...n. Therefore, the
optimum is achieved when the best fitting line goes through some point (zx,yx),
ie., m = yg/xp for some k : 1 < k < n. It is not true in general that about 50%
of the points are below and above the line.

This problem can be generalized by translating the origin into any given
pivot point. If the given pivot point is the data point (z;,y;) then we need the
weighted median of the slope values %,z =1,2,...n, but i # j, with weights
|z; — x;]. A setting where this problem might arise is when one wishes to find the
best fitting line in the least absolute deviation sense, given that one of the data
points is known with certainty to be on the line.

3 Finding the best fitting line: the least absolute
deviation line

Fitting a straight line to a finite collection of data points in the plane is a funda-
mental problem in statistical estimation. Although methods such as least squares
are well understood and easy to compute, these methods are known to suffer from
the phenomenon that a small number of outlying points can perturb the line of fit
by an arbitrarily large amount [10].

A popular alternative is the least absolute deviation (LAD) line which is
less sensitive to the presence of outliers (see Problems 4 and 5). For historical
background of this and other best fitting line criteria and techniques the reader
can consult [2]. It is worth noting that the problem of finding the LAD line (in the
simplified form mentioned in Example 6) is older than that of the least squares.

From a technical point of view LAD line fitting embodies a set of ideas that is
important in linear optimization theory and numerical analysis [2]. Several refined
and sophisticated algorithms have been developed to find an LAD line for a given
set of data points. We leave to other sources the task of evaluating and comparing
these algorithms [1, 2]. Our intent is the extraction of enough properties to buy
us an easy characterization of all LAD lines for a given data set, and to suggest
two simple algorithms for finding them that flow out of our analysis.

Note that when there are several LAD lines then we can take their averages
to yield other LAD lines [1]. In fact, as will be seen in this section, any convex
combination will also result in an LAD line.

The next problem involves three points only but it illuminates the main idea.

Problem 4 [11, Problem E3079] Let (z1,y1), (z2,y2) and (xs3,ys) be three
points in R?, no two of which have the same x-coordinate. Find a least absolute
deviation (LAD) line y = Az + B, i.e., find (a,b) = (A, B) that minimizes
3
g(a,b) = Z laz; +b— y;|.

i=1
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Must an LAD line pass through two of the three points?

Solution: The answer is yes. Here is a sketch of the proof. A line that does not
contain any of the three data points, when shifted vertically toward the majority
of the points, will decrease g(a,b). Thus, one of the data points must lie on the
LAD line. If the line does not contain another point, then it is easy to see that we
can further decrease g(a,b) by rotating the line around this pivot point until we
meet another point. Of course, Example 6 also guarantees that the line contains a
second data point, too. In fact, a simple geometric argument shows that the LAD
line must go through the two points with the left- and rightmost z-coordinates. Bl

When the condition that no two of the three data points have the same z-
coordinate is replaced by the weaker condition that all three data points must
not share the same z-coordinate, it is easy to find examples of Problem 4 where
the LAD line is not unique. Nevertheless, the analysis illustrated above guarantees
that at least one LAD line must pass through two data points. If all z-coordinates
are the same then this problem reduces to Problem 1 with ¢ in (1) playing the
role of the intercept at the common x-coordinate.

The following is a generalization of Problem 4 to n points under the weaker
condition.

Problem 5 Let (z1,1), (72,%2), - .., (Tn,yn) be n points in R?, not all sharing
the same x-coordinate. Find a least absolute deviation (LAD) line y = Ax+ B for
the set of points, i.e., find (a,b) = (A, B) that minimizes

g(a,b) = Z laz; +b— y;|.
i=1

We first note that prior knowledge of the optimum intercept b or slope a reduces
the search for an LAD line to Problem 2 (in the former case via Example 6).

The graphical argument in Problem 4 (taking into account the weakened
hypothesis) can be followed here without difficulty to conclude that an LAD line
exists that passes through two data points. We will call any such LAD line a special
LAD line. Alternatively, one could come to the same conclusion by noting that
g(a,b) is piecewise linear in either variable when holding the other fixed and thus
attains its minimum at the zero of one of its summands. The result immediately
suggests

Algorithm 1 for finding an LAD line: Run through all pairs of points and check
which of the determined lines attains the optimum absolute deviation.

More is to be gained. The function g(a,b) is a convex function, so the set S on
which it attains its minimum is convex. Any convex combination of LAD lines
corresponds to a convex combination of points in S, and thus is itself an LAD
line. But g(a,b) is piecewise linear as well, in the sense that its domain can be
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partitioned, by the n lines b = —x;a + y; in the ab-plane, as it will be explained
in the proof of Claim 2, into a finite number of convex polygonal regions (some of
which are infinite in extent), and within each region g(a, b) is linear. Thus, the set
S on which g(a,b) attains its minimum consists of a single point, a line segment,
or a convex polygonal region of finite extent (since g(a,b) — oo as |a| + |b] — 00).
In any case, the vertices (or single point) of the set S are among the points of
intersection of the n lines, and the coordinates of each give the slope and intercept
of a special LAD line in the zy-plane, i.e., one passing through two data points.
Thus, we can make

Claim 1 The set of all LAD lines is precisely the convex hull of the special LAD
lines.

Since the special LAD lines are now seen to play a crucial role in characterizing all
LAD lines, there arises the question of how many special LAD lines can be found
for a given set of data points. Interestingly enough, the answer to this question
pivots on whether the number of data points is even or odd. In the even case,
the possible number of special LAD lines is unbounded. In fact, for any given
even number n = 2k, a data set can be constructed with exactly n special LAD
lines. For example, we can select k& points along the convex upper branch of the
hyperbola 3% — 22 = 1, and their k reflections with respect to the z-axis along the
concave lower branch. Then, the special LAD lines are precisely the k& — 1 lines
passing through adjacent points of the convex branch, their reflections, the line
passing through the left-most point of the convex branch and the right-most point
of the concave branch, and its reflection.

In light of the preceding considerations, the answer to the odd case may
appear surprising. Our conclusion will be

Claim 2 If the data set has an odd number of points, then there are at most two
special LAD lines for the set. Moreover, if there are two special LAD lines, they
must intersect, and every other LAD line must pass through the same intersection.

It is illuminating to reach our conclusion by employing more completely the dual
relationship between the xy-plane and the ab-plane. First, note that every line
y = aox + by in the zy-plane corresponds to a point (ag,by) in the ab-plane.
Further, every point (zg,yo) in the xy-plane corresponds (by way of the lines
y = ax + (yo — axp) passing through it) to the line b = —zga + yo in the ab-plane
with slope —z( and vertical intercept yg. Now, we translate the absolute deviation
function g(a, b) directly into the ab-plane by noting that the absolute deviation for
the particular line y = agx + b in the xy-plane is

g(ao,bo) = Y _ laoz; +bo — yi)| = Y _ |bo — (—wiao + vs)|.
=1 =1

Interpreted in the ab-plane, the second sum is the sum of the vertical distances
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between the point (ag, bg) and the n lines b = —z;a + y;, which we will call the
absolute deviation between the point and the set of lines.

An example may be in order. A data set in the zy-plane is given in Figure 2.
The points p through ¢ correspond to the lines in the plane shown in Figure 3, also
labeled p through ¢. The line y = —z + 1 that passes through points p and 7 in the
zy-plane corresponds to the point (—1, 1) in the ab-plane which, not surprisingly,
is the intersection of the two lines labeled p and r. A quick calculation in each
plane will show that the absolute deviation is 8.

We search for the least absolute deviation in the ab-plane. The absolute de-
viation for any point is improved by moving the point vertically to the majority
of lines until it is on the “middle” line, with as many lines above as below. Thus,
the least absolute deviation can be found along the piecewise linear middle path.
(See the highlighted path in Figure 3). Define the function h(a) to be the abso-
lute deviation for the point on the middle path corresponding to a. Notice that,
except for a finite number of values for a, the number of lines is the same above
and below the point (a,b) on the middle path, and h(a) can be more easily cal-
culated. In fact, we can find h(a) by taking the difference between the sum of the
b-coordinates for the points on the lines above the middle path at a¢ and the sum
of the b-coordinates for the points on the lines below the middle path at a. The
function h(a) itself is a piecewise linear and convex function (and is illustrated
in Figure 5 for the example). The piecewise linearity for h(a) should be obvious
by now. The convexity is established by showing that the derivative h'(a) strictly
increases across each value ag where the middle path is intersected with another
line or lines. At such a point (ag,bg) in the ab-plane, the slope of any line not
intersecting the path makes no contribution to the change in h'(a). As for those
lines passing through (ag, bg) the number of lines above the middle path remains
the same to the left and right of ag, as well as the number of lines below the mid-
dle path. Now, order the slopes of the lines passing through (ag, bg) from least to
greatest: mg < mp < ... < my with m; and my_; being the slopes of the middle
path entering and exiting the point (see Figure 4). The slopes’ contributions to
the change in h/(a) come in pairs, working from outside towards the middle of the
list. For ¢ < min(l, k — 1), the contribution of the ith and (k — 7)th slopes to h’(a)
is m; — my—; upon entering (ao, by) (because the line with slope m; is above the
middle path and the line with slope my_; is below it), and m_; —m; upon exiting
it. The difference 2(my—; — m;) is positive. For min(l,k — 1) < i < 1k, the lines
(or line when i = %k) with slopes m; and my_; fall on the same side of the middle
path and add no contribution to the change in h'(a). Finally, the contribution of
my and my_; to the change in h'(a) is |m; —mg_,|. Since there are at least two lines
passing through (ag, bp), the sum of the individual contributions must be positive.
Thus, h(a) is convex in such a way that slope of each linear section is strictly
greater than the slope of the preceding section. The function h(a) must therefore
take on its minimum at strictly one point, corresponding to a special LAD line,
or along one linear section, with only its two endpoints corresponding to special
LAD lines. In either case there can be no more than two special LAD lines. [ |
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It is not hard to see that for an even number of data points a middle path can
be found in the ab-plane as well, though it is not uniquely determined, and along
any one of these middle paths, an LAD line will be found. Thus, for any number
of points, we have the following improvement over our previous algorithm.

Algorithm 2 for finding all special LAD lines: For each data point, calculate the
slopes of the lines passing through this point and each of the other data points.
Then, among these lines, calculate the absolute deviations only of the (at most
two) lines with median slopes. The special LAD lines are precisely those calculated
with minimum absolute deviations.

Figure 2 Figure 3

Figure 4 Figure 5

In higher dimensions the function to be minimized would be

n

k—1
glco,c1y- vy Ch—1) =Z|ch‘$i,j+co—yi| (4)

i=1 j=1

in variables cg, ¢, . .., cx_1. Gauss formalized the corresponding statement for the
higher dimensional case in 1809. As a matter of fact, for the data set X = {v,}",,
with v; = (Ti1,%i2, -, Tik—1,¥i), = 1,2,...,n, (XCRF k < n), there is an
optimum vector ¢ = (¢, c1, .- ., ck—1) with respect to function g defined in (4) so
‘Ehat at lea]nst k points are contained in the hyperplane Zf;ll cixi;+co—yi =0
2, pp- 7-8].

4 A discrete optimization problem in two vari-
ables

In this last section, we will present a problem of a nature seemingly unrelated to
those we have already considered, having to do with linear Diophantine equations.
Indeed, in certain cases, the extended Euclidean algorithm immediately provides
the solution. Yet, as will be seen, the algorithm must be complemented in the
general case with the evaluation of a piecewise linear function as in Problems 1
and 2, but now at two consecutive integers.

Here we find a solution which is nearest to the origin with respect to the least
absolute difference. The following problem can be found in various sources (e.g.,
http://cut-the-knot.com/water2.html#proof).
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Example 7 For a perfect breakfast, a fellow decides to boil an egg exactly 15
minutes. He has two hour glasses—one for 7 minutes, another for 11. How should he
go about preparing his breakfast? What would be the minimum required number
of glass turns? (Starting does not count as “turning.”)

It takes one turn of the larger glass. We start both glasses. After the smaller glass
empties we start boiling our egg and continue watching the big glass. When the
big glass runs out the egg will have been boiling for 4 minutes. We turn the big
glass and wait another 11 minutes. We get 4 4+ 11 = 15 with one turn of the big
glass. Clearly, it is an absolute minimum.

In the generalized version, there are two hour glasses with capacities a and
b (b > a) minutes. It is possible to measure 2b— ¢ minutes by the above mentioned
steps with a and b playing the role of 11 and 7.

Bogomolny refers to [15, #479] and to Quicky #1 [3, pages 190 and 199] as
the potential sources for this example. Note that in the second reference Gardner,
who cites other sources, seems to have in mind a variation where the shortest time
is to be found. However, because it fits the theme of our discussion, we will pursue
only the version already proposed.

In our discussion, notice that both hour glasses were run concurrently and
without interruption. We restrict the scope of possible solutions beyond that of
the original problem by stipulating that

(1) each hour glass, if used, must be used for an uninterrupted period of time
by immediately turning it over each time it runs out during that period, and
that

(2) the two hour glasses either must be started simultaneously or one started
immediately after the other has run out for the last time.

Under these restrictions, each solution is simply the solution to a linear Diophan-
tine equation.

Example 8 Generate all integer solutions in z and y to the following problems
(a) 1=11lz+ 7y
(b) 15 =11z + Ty,

and find 2 and y such that |z| + |y| is minimum.

Part (b) corresponds to Example 7. For simplicity, we count the number of runs
of each hourglass which corresponds to |z| + |y| — 2 turns in the sense of the above
example, except if one hourglass is never run.

Solution: We use the parameterized form of the solution obtained by the extended
Euclidean algorithm. For example, ged(11,7) = 1 = 11z + 7y with (z,y) = (2, -3),
and the general solution is x = 2 4+ 7t and y = —3 — 11¢ with an arbitrary integer
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t. Note that the next to last convergent 3/2 = [1;1,1] in the continued fraction
expansion of 11/7 = [1;1,1,3] provides us with the initial solution (2,—3) or
(=2, 3) yielding the pair £ gcd(11,7). Now we are ready to solve (a) and (b).

(a) We need that min|2 + 7| +| — 3 — 11¢|] = 2+ 3 = 5 meaning that
(z,y) = (2,—3), with ¢t = 0, will provide the optimal solution.

(b) We can multiply the equality 1 = 11 -2 —7-3 by 15 to get an initial
solution (30, —45), i.e., 15 =11-30 — 7 - 45. We need min |30 + 7¢| + | — 45 — 11¢|
which is |2] + | — 1| = 3 and achieved at t = —4. It gives the optimal solution
15=11-2—-7-1 at (z,y) = (2,—1) confirming the solution of Example 7.

Now we generalize Example 7 under assumptions (1) and (2).

Problem 6 In general, find a solution to the Diophantine equation k = ax + by
(k> 0, a and b relatively prime positive integers), that minimizes |x| + |y|.

Solution: Note that if b = 1 then the solution is trivial. By excluding the simple
case where a = b, without loss of generality, we can assume that 2 < b < a, and
that by some method such as the one illustrated in Example 8, we have already
found an initial solution (k;,k,) to the Diophantine equation. Then, we get all
solutions parametrically:

x(t) = kg +0t, y(t) =k, —at, (5)

as t runs through the integers.

Our goal is to minimize the function f(t) = |z(t)| + |y(t)|.- The approach we
take is analytically geometrical, viewing all of the solutions to the Diophantine
equation as equally spaced lattice points in R? on the line y = —ZT+ %, which has
slope —3 < —1 and passes through the first quadrant. Notice that, for D > 0, the
level curve |z| + |y| = D is a diamond oriented square centered at the origin with
opposite vertices at =D on the two axes. By increasing D from a small enough
value, we expand the diamond until it first intersects the line at its z-intercept
27 and then if necessary, continue to expand the diamond until a solution to the
Diophantine equation (z*,y*) is reached for the first time (cf. Figure 6). The
solution minimizes f(t) = |z(¢)| + |y(t)| and further, |y*| < a, which suggests the
following simple algorithm.

From an initial solution (k,,k,) to the Diophantine equation k = az + by,
subtract a multiple ¢ = m of a from k, so that 0 < k, — am < a, thus minimizing
y(t) > 0. Then check the solutions (k, + bm, k, — am) and (kg + b(m + 1), k, —
a(m + 1)) to determine which one minimizes |x| + |y|. Even more briefly, find
m = L%J, and choose the solution corresponding to the minimum between f(m)
and f(m+1).

We note that the steps in the Euclidean algorithm for finding ged(a, b) are par-
alleled by calculating the partial quotients of the continued fraction expansion
[ag; a1, ..., an] of a/b. We can assume that a,, > 2. Note that the r + 1st (r > —1)
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convergent py41/¢r+1 = [ao; a1, ..., ar4+1] is generated from the preceding conver-
gents by the matrix identity

Pre1 Pr\ _ (Pr DPre1 ary1 1 po p-1 p-2\_[(a 1 0 (6)
qry1 Qr O Gr—1 1 0/ \9 g1 g2 1 0 1)°
and that ged(a,b) = |prn-1b — ¢n—14].

Claim 3 In the special case that k = ged(a,b), the unique optimal solution is
(-1, —pn—1) if n is odd and (—¢n—1,pn—1) if n is even.

To prove this claim we note that, as we mentioned above, the next to last continued
fraction convergent ¢/d = pp—1/¢n-1 of a/b = p,/q, gives us an initial solution
(kz, ky)= (d,—c) or (—d,c) to kya + k,b = k. Since p,,r > 0, and g,,r > 1, are
strictly increasing sequences by (6), we observe that ¢ < a and d < b. In fact, in
this case the unique minimum is taken at (k,, k,) with value f(0). For, in the case
when ky, = —c < 0 we get f(—1) = —-d+b—c+a> f(0) = d+ ¢, for recurrence
(6) yields a > anc > 2¢ and b > a,d > 2d and thus a + b > 2(¢c + d). Similarly, if
ky, =c>0then f(1) = —d+b—c+a> f(0) =d+ c for the same reason. |

The visually minded reader can use the Stern-Brocot tree [4, pages 119 and 305] to
derive an alternative proof. Note that from the general solution (5) for (z(t),y(t))
we can form the linear rational transformation g(t) = 5%t = [ao; a1, ..., an + ¢]
with integer ¢. If ¢ = 0 then we get ¢g(0) = ¢/d, i.e., the initial solution (k;,k,)
in the fractional form while g(¢) tends to a/b as t — oo or t — —oco. In the tree,
the general solution can be identified as the union of the two points corresponding
t0 pn—1/qn-1 and (pp—1(an — 1) + pn—2)/(qn-1(an — 1) + gn—2), i-e.,, t = 0 and
t = —1 in (5), respectively; and the two paths starting immediately below p,, /¢,
and going toward the value of p,, /¢, . In fact, these branches correspond to g(t) =
[ap; a1, ... ,an,t] for t > 1, and g(t) = [ao;a1,...,an — 1,1, —(t + 1)] for ¢t < —2.
The structure of the tree guarantees the claim.

We note that the values of g(t) at fractions t = —1, —=1/2, =1/3, ..., =1/(a,—
1) are called intermediate fractions [7], and they represent the numbers on the path

between p,—1/q¢n—1 and p,/qn.

The continued fraction context makes clear the otherwise remarkable fact that the
same optimum solution is derived for any pair (a,b) where the partial quotients
are the same except for the last one, provided ged(a, b) = k. Interested readers can
consult [7] or [8] for a comprehensive study of continued fractions.

The next example shows that multiple optima might exist in Problem 6.

Example 9 Let us consider the Diophantine problem with & = 9 and (a,b) =
(11,7). We get 1 =2-11 — 3 -7, yielding (18, —27) as an initial solution (k;, k)
and general solution (x(¢),y(t)) = (18 + 7t,—27 — 11t) to 9 = 11z + Ty after
multiplication by k. For the “new” solution we get (—3,6) with t =m = | =27
—3. Now f(=3) =|-3[|+6=9=4+|—5| = f(—2) yielding a multiple optimum
at t = —3 and t = —2 (see Figure 7).
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We can characterize the cases with multiple optima by

Claim 4 Let C = (a +b)/2 be. Multiple optima exist if and only if z = £52C is a

2C
k=bC
a

non-positive integer and then D = C, or z = is a non-negative integer and

then D =z + C.

Note that Levit studied a related problem in [9]. He calls a solution to ax + by =
k,|a| > |b], a minimum solution with respect to x if |z| assumes its minimum, and
a definitely least solution (dls) if |z| and |y| both attain their least possible values.
An algorithm presented in [9] finds a dls if one exists with a simple test to check
if it is a dls indeed (cf. Corollary 2 and Lemma in [9]). If a dis exists (e.g., when a
is odd and k < C' [9, Theorem 3]) then it clearly minimizes |z|+ |y|, but otherwise
(e.g., when a is odd and k > ab — C, ibid.), this approach provides little help in
solving Problem 6.

We note that Problem 6 is a special instance of the one-dimensional version of
the celebrated Closest Vector Problem, for we try to find the closest vector of the
integer lattice formed by {¢(7,—11)|¢ integer} to (2, —3).

Figure 6 Figure 7

5 Conclusion

Optimization questions can be found in many fields of mathematics. We have
highlighted a selection of problems a little off of the beaten path, taken from
statistics and recreational mathematics, that are interesting in their own right
and worthy of greater exposure. In addition, we hope to have introduced to the
neophyte and recalled to the experienced problem solver alternative techniques
that suggest the rich variety of approaches for optimization, even to the crossing
over of disciplines.

6 Acknowledgment

The authors wish to thank the referee for useful comments and for suggesting the
inclusion of arguments for clarification and references for completeness.

References

1. David Birkes and Yadolah Dodge, Alternative Methods of Regression, Wiley,
New York, 1993.

2. Peter Bloomsfield and William L. Steiger, Least Absolute Deviations, Theory,
Applications and Algorithms, Birkhduser, Boston, 1983.



18 G. Tollisen and T. Lengyel

3. Martin Gardner, Mathematical Circus, MAA, 1992 (updated and revised
from the 1981 edition published by Vintage Books, NY).

4. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd
edition, Reading, MA: Addison-Wesley, 1994.

5. T. Hale, Trevor Hale’s location science references,
http://www.ent.ohiou.edu/"thale/thlocation.html

6. James A. Hanley, Lawrence Joseph, Robert W. Platt, Moo K. Chung, and
Patrick Bélisle, Visualizing the Median as the Minimum-Deviation Location,
Amer. Stat. 55(2001), 150-152.

7. A. Ya. Khinchin, Continued fractions, New York, Dover, 1997.

8. D. E. Knuth, The Art of Computer Programming, vol. 2, Seminumerical
Algorithms, 2nd edition, Reading, MA: Addison-Wesley, 1981.

9. R. J. Levit, A minimum solution of a Diophantine equation, Amer. Math.
Monthly 63(1956), 646-651.

10. Jit{ Matousek, David Mount, and Nathan S. Netanyahu, Efficient randomized
algorithms for the repeated median line estimator, Algorithmica 20(1998),
136-150.

11. Solution to Problem E3079, Amer. Math. Monthly 94(1987), 1000-1002

12. Hugo Steinhaus, Mathematical Snapshots, Dover, 1999.

13. Tadashi F. Tokieda, Mechanical ideas in geometry. Amer. Math. Monthly
105(1998), 697-703.

14. Ravi Vakil, A Mathematical Mosaic, Kelly Publ. Inc., Burlington, Ontario,
Canada, 1996.

15. D. Wells, The Penguin Book of Curious and Interesting Puzzles, Penguin
Books, 1992.

Gregory P. Tollisen and Tamas Lengyel
Mathematics Department Mathematics Department
Occidental College Occidental College

1600 Campus Road 1600 Campus Road

Los Angeles, CA 90041 Los Angeles, CA

USA USA

e-mail: tollisen@oxy.edu e-mail: lengyel@oxy.edu



