
ISSN 2070-0466, p-Adic Numbers, Ultrametric Analysis and Applications, 2012, Vol. 4, No. 3, pp. 179–186. c© Pleiades Publishing, Ltd., 2012.

RESEARCH ARTICLES

On Some 2-Adic Properties of a Recurrence Involving Stirling
Numbers∗

T. Lengyel**

Mathematics Department, Occidental College, 1600 Campus Road
Los Angeles, CA90041, USA

Received August 29, 2011

Abstract—We analyze some 2-adic properties of the sequence defined by the recurrence Z(1) =

1; Z(n) =
∑n−1

k=1 S(n, k)Z(k), n ≥ 2, which counts the number of ultradissimilarity relations, i.e.,
ultrametrics on an n-set. We prove the 2-adic growth property ν2(Z(n)) ≥ �log2 n� − 1 and present
conjectures on the exact values.
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1. INTRODUCTION

The sequence Z(1) = 1,

Z(n) =

n−1∑

k=1

S(n, k)Z(k), n ≥ 2, (1)

was defined as the number of ultradissimilarity relations on an n-set, i.e., the number of not necessarily
maximal chains from the minimal to the maximal element in the partition lattice of an n-set in [8] and
further discussed in [5, 14], and [16].

Let n be a positive integer, and let ν2(n) and d2(n) denote the highest power of 2 dividing n and the
number of ones in the binary representation of n, respectively. Tables 1–3 give the first ten, eighteen, and
seven original values, 2-adic orders, and modulo 8 remainders of Z(n), respectively.

n 1 2 3 4 5 6 7 8 9 10

Z(n) 1 1 4 32 436 9012 262760 10270696 518277560 32795928016

Table 1. The values of Z(n) for n ≤ 10.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ν2(Z(n)) 0 0 2 5 2 2 3 3 3 4 3 3 5 7 9 4 4 4

Table 2. The 2-adic orders of Z(n) for n ≤ 18.

The asymptotic growth of the sequence Z(n) has been analyzed in [2, 6, 8], and [13]. In this paper,
we focus on some particular 2-adic properties of Z(n) that are closely related to those raised in 1998, cf.
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180 LENGYEL

n 1 2 3 4 5 6 7

Z(n) mod 8 1 1 4 0 4 4 0

Table 3. The values of Z(n) mod 8 for n ≤ 7.

[9]. Our main result is a 2-adic growth property for Z(n) presented in Theorem 7 and Remark 1. More
precisely, we show that ν2(Z(n)) ≥ �log2 n� − 1 for n ≥ 1, and ν2(Z(2n)) ≥ n for n ≥ 2. The analysis
is based on some 2-adic properties of the Stirling numbers of the second kind whose investigation has
attracted significant attention in the last 20 years, e.g., [1, 3, 10, 11], and [12]. At the very heart of
the proof of the main result is a lower bound on the 2-adic order of the difference of Stirling numbers
determined in [11]. Theorems 9-10 on the parity of particular sequences of Stirling numbers and
Theorem 11 on special Stirling number congruences are of independent interest.

We note that expressions that involve weighted sums of the Stirling numbers of the second kind
{S(n, k)}nk=0 are rarely analyzed from a p-adic point of view due to inherent difficulties. Van Hamme
used an umbral calculus based approach to obtain Kummer-type congruential identities for the number
of preferential arrangements a(n) =

∑n
k=0 k!S(n, k) in [15] but the method does not seem to generalize

to our problem. In [4], a conjecture of Wilf that the alternating sum
∑n

k=0(−1)kS(n, k) is nonzero for
all n > 2 was discussed. We use a more complex combination of the Stirling numbers in the form of the
recurrence (1). The paper concludes by stating some conjectures regarding the structure of the sequence
ν2(Z(n)), n ≥ 1.

We use the following facts.

Theorem 1 ([3], Theorem 3). Let k, n ∈ N and 1 ≤ k ≤ n. Then

ν2(S(n, k)) ≥ d2(k)− d2(n). (2)

Theorem 2 ([11], Theorem 5). Let a, b, and n ∈ N, b ≤ a, and n be sufficiently large (in terms
of a and b). Then the 2-adic order of S(a2n, b2n) becomes constant as n → ∞. In fact, with

g(a, b) = ν2(
((2a−b)2n−2−1

(a−b)2n−1

)
) = d2((a− b)2n−1) + d2(b2

n−2 − 1)− d2((2a− b)2n−2 − 1) = d2(a− b) +

d2(b− 1)− d2(2a− b− 1), for any n > max{2, g(a, b) + 1} we get that

ν2(S(a2
n, b2n)) = g(a, b), (3)

and in general,

ν2(S(a2
n + u, b2n + u)) = g(a+ 1, b+ 1), (4)

independently of u, for any integer u : 1 ≤ u < 2n as long as ν2(u) > max{2, g(a + 1, b+ 1) + 1}.
The periodicity of g(a, b) yields that ν2(S((a+ 2t)2n, b2n)) = ν2(S(a2

n, b2n)) if t ≥ �log2(2a− b)�
is a nonnegative integer.

Theorem 3 ([11], Theorem 2). Let n, k, c ∈ N and 1 ≤ k ≤ 2n, then

ν2(S(c2
n, k)) = d2(k)− 1. (5)

Theorem 4 ([11], Theorem 11). Let n, k ∈ N, 3 ≤ k ≤ 2n, u be a nonnegative integer, and c ≥ 1 be
an odd integer, then

ν2(S(c2
n+1 + u, k)− S(c2n + u, k)) ≥ n− �log2 k�+ 2. (6)

Moreover, let a, b ∈ N and a/2 ≤ b < a, then

ν2(S(a2
n + u, k)− S(b2n + u, k)) ≥ n+ ν2(a− b)− �log2 k�+ 2. (7)

Theorem 5 ([11], Theorem 13). For integers n > m1 ≥ 2, m1 > m2 ≥ 0, and odd integer c ≥ 1, we
get

ν2(S(c2
n+1, 2m1 + 2m2)− S(c2n, 2m1 + 2m2)) = n−m1 + 1. (8)

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 4 No. 3 2012



ON SOME 2-ADIC PROPERTIES 181

Theorem 6 ([11], Theorem 4). Let n, c ∈ N and m be an integer, 2 ≤ m ≤ n, then

S(c2n, 2m) ≡ 1 mod 4 (9)

and for 2 ≤ m with c2n > 2m − 1,

S(c2n, 2m − 1) ≡ 3 · 2m−1 mod 2m+1. (10)

2. MAIN RESULTS

Our main result is

Theorem 7. For n ≥ 2 and L ≥ 0 integers, we have ν2(Z(2n + L)) ≥ n.

Remark 1. By writing k as k = 2n + L with 0 ≤ L ≤ 2n, it follows that ν2(Z(k)) ≥ �log2 k� − 1 for
k ≥ 1 integer, and the right hand side bound can be improved by one if k ≥ 4 is a power of two.

We need some other 2-adic properties of the Stirling numbers of the second kind given below.

Theorem 8. We have that S(2n+1 + L, 2n + L) is odd for all n,L ∈ N with n ≥ 3 and 0 ≤ L ≤ 2n.

Actually, we prove the following generalization.

Theorem 9. Let c, n, L ∈ N with c odd and n ≥ 3. Then S(c2n+1 + L, c2n + L) is odd for all
0 ≤ L ≤ 2n exactly if c is of form 4m+ 1 and m does not have two ones next to each other in
its binary representation.

Proof. We use the recurrence

S(N + 1,K + 1) = (K + 1)S(N,K + 1) + S(N,K). (11)

In fact, by (11) we have

S(c2n+1 + L, c2n + L) = (c2n + L)S(c2n+1 + L− 1, c2n + L) + S(c2n+1 + L− 1, c2n + L− 1).

If L ≥ 2 is even then the first term on the right hand side is even. Thus, S(c2n+1 + L, c2n + L) and
S(c2n+1 + L− 1, c2n + L− 1) share the same parity. On the other hand, if L is odd then by Theorem 1
we have that ν2(S(c2n+1 + L− 1, c2n + L)) ≥

(
d2(c) + d2(L)

)
−
(
d2(c) + d2(L− 1)

)
≥ 1 since then

L ≤ 2n − 1, to the same effect as above regarding the shared parity.
In the remaining case of L = 0, the condition that c is of form 4m+ 1 and m, written in bi-

nary, does not have two ones next to each other guarantees that S(c2n+1, c2n) is odd for n ≥ 3
by Theorem 2. In fact, we set a = 2c and b = c = 2m′ + 1, with some integer m′ ≥ 0, and de-
rive that ν2(S(c2

n+1, c2n)) = g(a, b) = d2(a− b) + d2(b− 1)− d2(2a − b− 1) = d2(c) + d2(c− 1)−
d2(3c− 1) = d2(m

′) + 1+ d2(m
′)− d2(6m

′ +2) = 2d2(m
′) + 1− d2(3m

′ +1) by (3). If m′ is even then
g(a, b) = 2d2(m

′)− d2(3m
′), and we know that d2(m′) + d2(2m

′)− d2(3m
′) ≥ 0 with equality holding

exactly if m′ and its shifted version 2m′ avoid matching nonzero digits in their binary forms, proving one
part of the claim. In the same vein, after rewriting g(a, b), we get that g(a, b) = d2(m

′) + d2(2m
′ + 1)−

d2(3m
′ + 1) is positive if m′ is odd since the ones digits of m′ and 2m′ + 1 are both equal to 1. Thus, m′

must be even.

Remark 2. The condition n ≥ 3 cannot be dropped as illustrated by the case with n = 2 and c = 11
when ν2S(c2

n+1 + L, c2n + L) is not constant for 0 ≤ L ≤ 2n. Clearly, Theorem 8 is a special case of
Theorem 9 with c = 1.

Numerical experimentation suggests

Conjecture 1. In general, for c, n, L ∈ N with c odd and n ≥ 3, we have that ν2(S(c2n+1 +L, c2n +L))
is constant for all 0 ≤ L ≤ 2n.
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Remark 3. Under Conjecture 1, the constant value of ν2(S(c2n+1 + L, c2n + L)) is determined as
2d2(c) − d2(3c) in identity (3) with L = 0 (cf. the proof of Theorem 9) and L = 2n. Identity (4) verifies
the same value for 0 < L < 2n. Conjecture 1 can be considered as a generalization of Theorem 2. Note
that (3) and (4) require lower bounds on ν2(L).

We will also need the following

Theorem 10. With n ≥ 1 and L ≥ 0, we have S(2n+1 +L, k) is even for all k: 2n +L < k < 2n+1. If
L = 0 we have ν2(S(2

n+1, k)) = d2(k)− 1 ≥ 1 for every n ≥ 1 and 2n < k < 2n+1.

Proof of Theorem 10. For L = 0, we have that ν2(S(2n+1, 2n + i)) = d(i) ≥ 1, for 1 ≤ i ≤ 2n − 1 by
Theorem 3.

Otherwise, assume that we have already proved that S(2n+1 + l, 2n + l+ i) is even for every l ≤ L− 1
with some L ≥ 1 and all i: 1 ≤ i ≤ 2n − l − 1. Now we prove the claim for l = L.

We have S(2n+1 +L, 2n +L+ i) = (2n +L+ i)S(2n+1 +L− 1, 2n +L+ i)+S(2n+1 +L− 1, 2n +
L+ i− 1) = (2n + L+ i)S(2n+1 + L− 1, 2n + L− 1 + i+ 1) + S(2n+1 + L− 1, 2n + L− 1 + i) for
each i: 1 ≤ i ≤ 2n − L− 1 by identity (11). The second term and the second factor of the first term
with 2 ≤ i+ 1 ≤ 2n − L = 2n − (L− 1)− 1 are even by the assumption.

Now we are ready to prove the main result.

Proof of Theorem 7. We prove the statement by induction on n. To this end, we assume that ν2(Z(2n +
L)) ≥ n is true for any integer L ≥ 0. It follows that ν2(Z(k)) ≥ �log2 k� − 1 for all k ≤ 2n + L with
0 ≤ L ≤ 2n, i.e., k ≤ 2n+1. Now we prove that ν2(Z(2n+1 +L)) ≥ n+ 1 also holds. The problem is that
typically, for small values of k, ν2(Z(k)) is small, and the multiplier S(2n +L, k) does not seem to help to
guarantee high 2-adic orders for the terms in (1). To overcome this problem, we consider the difference

Z(2n+1 + L)− Z(2n + L) =

2n+L−1∑

k=1

(S(2n+1 + L, k)− S(2n + L, k))Z(k)

+ S(2n+1 + L, 2n + L)Z(2n + L)

+

2n+1+L−1∑

k=2n+L+1

S(2n+1 + L, k)Z(k). (12)

We can 2-adically analyze the terms of the first summand. Indeed, the terms with k = 1 and 2 come with
large 2-adic orders (cf. Remark 5 in [11]). For a general term with k ≥ 3, we have

ν2(S(2
n+1 + L, k)− S(2n + L, k)) ≥ n− �log2 k�+ 2

by Theorem 4 and ν2(Z(k)) ≥ �log2 k� − 1 by the induction hypothesis, which yields the lower bound
n+ 1 for the term.

For the first factor of the second term we get that S(2n+1 + L, 2n + L) is odd by Theorem 8.
If L = 0 then the second factor of any term in the third summand gives us ν2(Z(k)) ≥ �log2 k� − 1 ≥

n by the induction hypothesis and the first factor yields ν2(S(2
n+1, k)) = d2(k)− 1 ≥ 1 by Theorem 10

(or Theorem 3) which guarantees that

ν2(S(2
n+1, k)Z(k)) ≥ n+ 1. (13)

By combining the above bounds and applying the induction hypothesis on the 2-adic order of Z(2n +L),
we get that Z(2n+1) ≡ (1 + S(2n+1, 2n))Z(2n) ≡ 0 mod 2n+1.

If L = 1 then we split the third summand in (12) into two parts

2n+1−1∑

k=2n+L+1

S(2n+1 + L, k)Z(k) +

2n+1+L−1∑

k=2n+1

S(2n+1 + L, k)Z(k).
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The second factor of any term in the first summand gives us ν2(Z(k)) ≥ �log2 k� − 1 ≥ n by the
induction hypothesis and the first factor yields ν2(S(2n+1 +L, k)) ≥ 1 by Theorem 10. For the only term
in the second summand, we have just proved that ν2(Z(2n+1)) ≥ n+1. By combining the above bounds
and applying the induction hypothesis on the 2-adic order of Z(2n + L), we get that Z(2n+1 + L) ≡
(1 + S(2n+1 + L, 2n + L))Z(2n + L) ≡ 0 mod 2n+1 by Theorem 8.

We can proceed for any L ≥ 2 in a fashion similar to the case with L = 1. Note that for the terms in
the second summand, we have already proved that ν2(Z(2n+1 + l)) ≥ n+ 1 for all 0 ≤ l < L.

We still need to prove the base case. By inspection, we observe that ν2(Z(k)) ≥ 2, for 4 ≤ k ≤ 7. In
addition, we have that ν2(Z(8+L)) ≥ 3 is true for any integer L ≥ 0. The proof can be done by induction
on L. The case of L = 0 is verified by Table 2. We observe that Z(8 + L) =

∑7+L
k=1 S(8 + L, k)Z(k). By

the induction hypothesis, it is sufficient to prove that ν2(
∑7

k=1 S(8 + L, k)Z(k)) ≥ 3, more precisely, by
Table 3, that S(8 +L, 1) +S(8 +L, 2) + 4 (S(8 + L, 3) + S(8 + L, 5) + S(8 + L, 6)) ≡ 0 mod 8 which
can be easily verified by using the equation

S(N,K) =
1

K!

K∑

i=0

(
K

i

)

(−1)i(K − i)N .

3. OPEN PROBLEMS

We suggest three conjectures that are still open, cf. [9].

Conjecture 2. For n ≥ 3, we have ν2(Z(2n)) = n.

Conjecture 3. For n ≥ 2, we have that

3 · 2n−1 ≤ max{k | ν2(Z(k)) = n} ≤ 2n+1 − 1.

We believe that the following stronger version, which claims that the actual value of max{k |
ν2(Z(k)) = n} is the lower bound, holds true.

Conjecture 4. For n ≥ 2, we have that

max{k | ν2(Z(k)) = n} = 3 · 2n−1.

Remark 4. Conjecture 4 slightly improves the lower bound on ν2(Z(k)) given in Remark 1, and we get
that ν2(Z(k)) ≥ �log2 k/3�+ 1 for k ≥ 3.

Remark 5. If ν2(S(2n+1, k)Z(k)) = n+ 1 for some k: 2n < k < 2n+1 with n ≥ 2, then in terms of
ν2(Z(k)), we have ν2(Z(k)) = n− d2(k) + 2 by Theorem 3. On the other hand, ν2(Z(k)) ≥ n holds
true in this range by Remark 1, and thus, d2(k) ≤ 2 and k = 2n + 2a with some a: 0 ≤ a ≤ n− 1.

Now, we extend Conjectures 2 and 4. The following conjecture was discovered by numerical
experimentation (cf. Table 4 for small values).

Conjecture 5. If ν2(S(2n+1, k)Z(k)) = n+1 for some k: 2n < k < 2n+1 with n ≥ 2, then in Remark 5,
we have a �= n− 1− a. In this case ν2(S(2

n+1, 2n + 2n−1−a)Z(2n + 2n−1−a)) = n+ 1 also holds. In
the special case of a = 0, it appears that we always have ν2(S(2n+1, 2n +1)Z(2n + 1)) = ν2(S(2

n+1, 3 ·
2n−1)Z(3 · 2n−1)) = n+ 1, i.e., ν2(Z(2n + 1)) = ν2(Z(3 · 2n−1)) = n.

Remark 6. Note that ν2(S(2n+1, k)Z(k)) = ν2(S(2
n+N , k)Z(k)) for any integer N ≥ 1 by Theorem 3,

e.g., if ν2(S(2n+1, k)Z(k)) = n+ 1 then ν2(S(2
n+N , k)Z(k)) = n+ 1, too.
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Remark 7. Conjecture 5 can be equivalently expressed in terms of ν2(Z(k)): if ν2(Z(k)) = m− d2(k) +
2 with some k: 2m < k < 2+1 then in Remark 5, we have a �= m− 1− a. In this case ν2(Z(2m +
2m−1−a)) = m− d2(k) + 2 also holds. For such k, of the form k = 2m + 2a and k = 2m + 2m−1−a,
we have that ν2

(
(S(2n+1, k)− S(2n, k))Z(k)

)
= (n− (m+ 1) + 2) + (m− 2 + 2) = n+1 for any n ≥

m+ 1 by Theorem 5. It seems that the special case with a = 0 always yields ν2(Z(2m + 1)) = ν2(Z(3 ·
2m−1)) = m, however, deriving this appears to be harder than proving Conjecture 2.

We also need the simplified version of Conjecture 2 and (17) from [11].

Conjecture 6 ([11]). Let n, k, a, b ∈ N, n ≥ 3, and 3 ≤ k ≤ 2n, then

ν2(S(2
n+1, k) − S(2n, k)) = n+ 1− f(k) (14)

for some function f(k) which is independent of n:

f(k) = 1 + �log2 k� − d2(k)− δ(k), (15)

with δ(4) = 2 and otherwise it is zero except if k is a power of two or one less, in which cases δ(k) = 1.

Note that �log2 k� − d2(k) is the number of zeros in the binary expansion of k, unless k is a power
of two. The function f(k) has been determined in [11] for small values of k: f(3) = f(4) = 0, and
f(5) = f(6) = 2.

We note that Conjecture 5 extends Conjecture 4.

Proof of Conjecture 3 under Conjectures 5-6. According to Conjecture 5 and Remark 7, ν2(Z(3 ·
2n−1)) = n holds for n ≥ 2. By Remark 1, we have that ν2(Z(2n+1)) = n+ 1 for k = 2n+1 and
ν2(Z(k)) ≥ �log2 k� − 1 ≥ n+ 1 for any k > 2n+1.

Now we present the proof of Conjecture 2 under Conjectures 5–6.

Proof of Conjecture 2 under Conjectures 5–6. We prove by induction on n ≥ 3. We assume that
ν2(Z(2N )) = N for any N, 3 ≤ N ≤ n. Table 2 verifies that ν2(Z(8)) = 3 indeed. For n ≥ 3, we use
the summation (12) with L = 0:

Z(2n+1)− Z(2n) =
2n−1∑

k=1

(S(2n+1, k)− S(2n, k))Z(k)

+ S(2n+1, 2n)Z(2n)

+

2n+1−1∑

k=2n+1

S(2n+1, k)Z(k). (16)

For the third summand, we revisit the case of L = 0 in the proof of Theorem 7. Now, for a general term,
we improve the lower bound (13). In fact, due to Conjecture 5, we have the refined 2-adic lower bound
ν2(S(2

n+1, k)Z(k)) ≥ n+2 except possibly if k = 2n +2a and then k = 2n +2n−1−a too, in which case
by appropriately pairing these exceptional terms, we get
ν2

(
S(2n+1, 2n + 2a)Z(2n + 2a) + S(2n+1, 2n + 2n−1−a)Z(2n + 2n−1−a)

)
≥ n+ 2 again.

In the first summand, the terms with k = 1 and 2 have large 2-adic orders according to Remark 5
of [11]. For k ≥ 3, we use the lower bound ν2(Z(k)) ≥ �log2 k/3� + 1 given in Remark 4, and get
ν2

(
(S(2n+1, k)− S(2n, k))Z(k)

)
≥ (n− �log2 k�+ 2) + (�log2 k/3�+ 1) = n+ 2 for every k except if

k: 2m < k ≤ 3 · 2m−1 for some m : 1 ≤ m ≤ n− 1. Note that in the given range d2(k) ≥ 2.

Now if ν2
(
(S(2n+1, k)− S(2n, k))Z(k)

)
= n+1 then since ν2(S(2n+1, k)−S(2n, k)) ≥ n−�log2 k�

+ 2 by Theorem 4, it follows that ν2(Z(k)) ≤ �log2 k� − 1. According to Remark 1, then we must have
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ν2(Z(k)) = �log2 k� − 1 = m; thus, ν2(S(2n+1, k)− S(2n, k)) = n−m+ 1. This yields d2(k) = 2 by
Conjecture 6.

Therefore, the condition ν2(Z(k)) = m− d2(k) + 2 = m in Remark 7 is satisfied. Now k = 2m + 2a

and its pair k = 2m + 2m−1−a both yield ν2(Z(2m + 2m)) = ν2(Z(2m + 2m−1−a)) = m. Theorem 5
guarantees that ν2

(
S(2n+1, 2m + 2a)− S(2n, 2m + 2a)

)
= ν2(S(2

n+1, 2m + 2m−1−a)− S(2n, 2m +

2m−1−a)) = n−m+ 1, and the combined term
(
S(2n+1, 2m + 2a)− S(2n, 2m + 2a)

)
Z(2m + 2a)+

(
S(2n+1, 2m + 2m−1−a)− S(2n, 2m + 2m−1−a)

)
Z(2n + 2m−1−a)

has a 2-adic order of at least n+ 2.

Finally, for n ≥ 3, we have S(2n+1, 2n) ≡ 1 mod 4 in the second summand of (16) by Theorem 6.
Thus, we conclude that

Z(2n+1) ≡
(
1 + S(2n+1, 2n)

)
Z(2n) ≡ 2Z(2n) mod 2n+2 (17)

holds by (16) which completes the proof by the induction hypothesis.

Since ν2(1 + S(2n+1 + 1, 2n + 1)) ≥ 2 for n ≥ 4 by identity (11), the summation (12) fails to provide
the proof for ν2(Z(2n + 1)), i.e., if L = 1 in Conjecture 5. We note that the following improvement of
Theorem 6 might help in further generalizations of (17).

Theorem 11. With n ∈ N and n ≥ 4, we have

1 + S(2n+1, 2n) ≡ 6 mod 32.

The proof is based on identity (9) of [12] with the setting m = n− 1 ≥ 3 and a = 1, which yields that

S(2n, 2n−1) ≡
(
3 · 2n−3 − 1

2n−2

)

mod 2n−1.

Then, it concludes by using the generalization of the classical theorem on
(
N
M

)
/pνp

(
(NM)

)

mod p to
modulo any prime power pq, with p = 2 and q = 5, cf. [7, Theorem 1].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ν2(Z(n)) 0 0 2 5 2 2 3 3 3 4 3 3 5 7 9 4 4

ν2(S(2
6, n)Z(n)) 0 0 3 5 3 3 5 3 4 5 5 4 7 9 12 4 5

�log2 n� 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

ν2(Z(n)) 4 4 4 4 6 4 4 7 5 5 8 6 8 6 5 5 7

ν2(S(2
6, n)Z(n)) 5 6 5 6 8 7 5 9 7 8 10 9 11 10 5 6 8

�log2 n� 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6

Table 4. The values of ν2(S(26, k)Z(k)) for k ≤ 34.
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We note that for p �= 2, νp(Z(n)) does not seem to have any transparent structure and behaves
quite chaotically. Finally, we mention the (divergent) exponential generating function of the sequence
Z(n), n ≥ 1,

Z(x) =

∞∑

n=1

Z(n)
xn

n!

that satisfies the functional equation 2Z(x) = x+ Z(ex − 1) as noted in [8]. It can be used to analyze
the growth of the sequence Z(n), cf. [6] and [13]. It would be interesting to see if it can also help in
discovering p-adic properties of the sequence.

ACKNOWLEDGMENTS

I would like to thank Gregory P. Tollisen and the referee for helpful comments and careful reading of
the manuscript.

REFERENCES
1. T. Amdebenrhan, D. Manna, and V. H. Moll, “The 2-adic valuation of Stirling numbers,” Exp. Math. 17,

69–82 (2008).
2. L. Babai and T. Lengyel, “A convergence criterion for recurrent sequences with application to the partition

lattice,” Analysis 12, 109–119 (1992).
3. S. De Wannemacker, “On 2-adic orders of Stirling numbers of the second kind,” Integers. Elect. J. Combin.

Numb. Theory 5 (1), A21, 7 pp. (electronic), 2005.
4. S. De Wannemacker, “On a conjecture of Wilf,” J. Comb. Theory, Ser. A 114:7, 1332–1349 (2007).
5. S. R. Finch, “Lengyel’s constant,” in Mathematical Constants, Encyclopedia of Math. and its Appl. (No.

94), 316–321 (Cambridge Univ Press, 2003).
6. P. Flajolet and B. Salvy, “Hierarchical set partitions and analytic iterates of the exponential function,” 13 pp.

(unpublished manuscript, 1990).
7. A. Granville, “Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers,”

in Organic Mathematics (Burnaby, BC, 1995), vol. 20 of CMS Conf. Proc., 253–276 (Amer. Math.
Soc., Providence, RI, 1997). Elect. version (a dynamic survey): http://www.dms.umontreal.ca/~andrew/
Binomial/.

8. T. Lengyel, “On a recurrence involving Stirling numbers,” Europ. J. Combin. 5, 313–321 (1984).
9. T. Lengyel, Letter to Prof. Lucien D. Van Hamme, (1998).

10. T. Lengyel, “On the divisibility by 2 of the Stirling numbers of the second kind,” Fibonacci Quart. 32, 194–
201 (1994).

11. T. Lengyel, “On the 2-adic order of Stirling numbers of the second kind and their differences,”
21st Int. Conf. on Formal Power Series & Alg. Combin. (FPSAC 2009) (Hagenberg, Austria. 2009),
Discrete Math. Theor. Comput. Sci. Proc. AK, 561–572 (2009). Downloadable from: http://www.dmtcs.
org/dmtcs-ojs/index.php/proceedings/article/view/dmAK0147/.

12. T. Lengyel, “Alternative proofs on the 2-adic order of Stirling numbers of the second kind,” Integers. Elect. J.
Combin. Numb. Theory 10, 453–463 (2010).

13. T. Prellberg, “On the asymptotic analysis of a class of linear recurrences,” talk given at the 14th Int. Conf.
on Formal Power Series & Alg. Combin. (FPSAC 2002) (Melbourne, Australia, 2002). Downloadable from:
http://www.maths.qmw.ac.uk/~tp/talks/recurrence.pdf.

14. N. J. A. Sloane, “Sequence A005121,” The Encyclopedia of Integer Sequences (Acad. Press, 1995), http:
//www.research.att.com/~njas/sequences/A005121, (on the decimal expansion: A086053, cf.http:
//www.research.att.com/~njas/sequences/A086053 and a possible and surprising interpretation:
A097906, cf. http://www.research.att.com/~njas/sequences/A097906.

15. L. Van Hamme, “Solution to Problem 6658,” Amer. Math. Monthly 100, 953–954 (1993).
16. E. W. Weisstein, “Lengyel’s constant,” in CRC Concise Encyclopedia of Mathematics p. 1749 (Chapman

& Hall / CRC, 2002).

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 4 No. 3 2012


