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On the 2-adic order of Stirling numbers of the
second kind and their differences

Tamás Lengyel1

1Occidental College, 1600 Campus Road, Los Angeles, CA90041, USA

Let n and k be positive integers,d(k) and ν2(k) denote the number of ones in the binary representation
of k and the highest power of two dividingk, respectively. De Wannemacker recently proved for the Stir-
ling numbers of the second kind thatν2(S(2n, k)) = d(k) − 1, 1 ≤ k ≤ 2n. Here we prove that
ν2(S(c2n, k)) = d(k) − 1, 1 ≤ k ≤ 2n, for any positive integerc. We improve and extend this statement in
some special cases. For the difference, we obtain lower bounds onν2

(
S(c2n+1 + u, k)− S(c2n + u, k)

)
for

any nonnegative integeru, make a conjecture on the exact order and, foru = 0, prove part of it whenk ≤ 6,
or k ≥ 5 andd(k) ≤ 2.

The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and
Bell polynomials, and some divisibility properties.
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1 Introduction
The study ofp-adic properties of Stirling numbers of the second kind is full with challenging problems.
Lengyel (1994) proved that

ν2(S(2n, k)) = d(k)− 1 (1)

for all sufficiently largen, and in fact,n ≥ k − 2 suffices and conjectured thatν2(S(2n, k)) = d(k)− 1
for all values ofk : 1 ≤ k ≤ 2n. The conjecture was eventually proved by De Wannemacker.

Theorem 1 (De Wannemacker (2005))Letn, k ∈ N and1 ≤ k ≤ 2n. Then we have

ν2(S(2n, k)) = d(k)− 1. (2)

Related results fork ≤ 5 can be found in Amdeberhan et al. (2008). We generalize De Wannemacker’s
proof in Section 2. We obtain related results in Section 3. For example, we prove that the 2-adic
order of S(a2n, b2n) becomes constant asn → ∞ for any positive integersa ≥ b. As a new di-
rection of investigation, we study the differences of Stirling numbers in Section 4. Lower bounds on
ν2

(
S(c2n+1 + u, k)− S(c2n + u, k)

)
for any nonnegative integeru and a conjecture on the exact order

are presented. Foru = 0, we prove the conjecture provided thatk ≤ 6, or k ≥ 5 andd(k) ≤ 2.
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The proofs rely on the use of identity (7) by De Wannemacker (2005), the inclusion-exclusion principle
based calculation (20) of the Stirling numbers, their generating function (10) and a family of congruential
identities for Bell polynomials (23) by Junod (2002). Section 5 utilizes (23) to improve previous results.
Section 6 shows that some of the results can be extended to primes other than two.

We note that Flajolet (1982), and Gertsch and Robert (1996) also use formal power series or umbral
calculus based techniques to prove divisibility properties.

Exact 2-adic orders are determined in Theorems 2-5, 7, and 12-13. As a summary, we note that the
2-adic orderν2(S(a2n + u, b2n + v)) is discussed with the particular triplet(u, v, b) of parameters. In
general, exact values are obtained (except in Remark 2 in which we determine lower bounds on the
2-adic orders). For instance,(0, 2m − 1, 0) (or (1, 2m, 0)), 2 ≤ m < log2(a2n + 1), in Theorem 4
(or in Remark 3);(0, 2m, 0), 2 ≤ m ≤ n, in Theorem 4;(u, u, b), 0 ≤ u < 2n, in Theorem 5; and
(2m, 0, 1), 0 ≤ m ≤ n− 1, in Theorem 6; potentially with some other extra assumptions.

In this paper, we include the proofs of the theorems or their sketches if they use generating function or
power series based arguments but omit some other proofs.

We note that generating functions (Section 3) and related formal power series (Section 5) based tech-
niques outlined in this paper might lead to improved congruential identities,p-adic results, or their alter-
native proofs involving other combinatorial quantities, their lacunary series, and their differences, often
proved by other methods.

2 A generalization
Theorem 2 Letn, k, c ∈ N and1 ≤ k ≤ 2n, then

ν2(S(c2n, k)) = d(k)− 1. (3)

Remark 1 In other words, for any fixed k ≥ 1, we have that ν2(S(c2n, k)) = d(k)− 1 if n ≥ dlog2 ke.
Without loss of generality, we may assume that c is an odd integer (otherwise, we can factor c into a power
of two and an odd integer). Note that we obtain

ν2(S(4c, 5)) ≥ 2 > 1 = d(5)− 1 (4)

for c ≥ 1 odd by (Amdeberhan et al., 2008, formula (3.1))

S(n, 5) =
1
24

(5n−1 − 4n + 2 · 3n − 2n+1 + 1), n ≥ 1. (5)

For the generalization of (4) see Remark 2. In a similar fashion,

S(n, 4) =
1
6
(4n−1 − 3n + 3 · 2n−1 − 1), n ≥ 1, (6)
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proves that S(c, 4) is even if c is odd (Amdeberhan et al., 2008, identity (2.14)) while d(4)−1 = 0. Also,
S(c2n, c2n − 1) =

(
c2n

2

)
and therefore,

ν2(S(c2n, c2n − 1)) = n− 1 < n ≤ d(c2n − 1)− 1 = n + d(c)− 2,

for n ≥ 1, c > 1 odd. More involved cases of a different type are covered by Theorems 6 and 7. Thus,
we cannot expect to extend Theorems 1 and 2 beyond the range 1 ≤ k ≤ 2n, i.e., dlog2 ke ≤ n. On the
other hand, we mention some extensions in Remark 2.

Proof of Theorem 2: The proof is by induction ond(c). The initial case is withd(c) = 1, i.e., whenc2n

is a power of two, and it is taken care of by Theorem 1.

Ford(c) ≥ 2, we use the identity from (De Wannemacker, 2005, Theorem 2)

S(n + m, k) =
k∑

i=0

k∑
j=i

(
j

i

)
(k − i)!
(k − j)!

S(n, k − i)S(m, j) (7)

which plays a crucial role in the proof of Theorem 1 in De Wannemacker (2005). Assume that (3) holds
for all c ≥ 1 with d(c) ≤ d− 1 for somed ≥ 2. We prove that it holds for allc with d(c) = d. In fact, let
c′2n be the highest power of two contained inc2n. Then we can writec2n as the sumc′2n + (c− c′)2n,
and by (7) we get that

S(c′2n + (c− c′)2n, k) =
k∑

i=0

k∑
j=i

(
j

i

)
(k − i)!
(k − j)!

S(c′2n, k − i)S((c− c′)2n, j)

sinced(c′) = 1, d(c− c′) = d(c)− 1 ≤ d− 1, andk − i, j ≤ 2n. By the induction hypothesis

ν2(S(c′2n, k − i)S((c− c′)2n, j)) = d(k − i) + d(j)− 2,

and the proof proceeds exactly the same way as in (De Wannemacker, 2005, Section 3). 2

Remark 2 We can generalize inequality (4) and find that in general, ifa is an integer such that1 ≤
a ≤ 2n − 2 thenν2(S(c2n, 2n + a)) ≥ d(a) + 1 > d(a) = d(2n + a) − 1 for c ≥ 3 odd. (On the
other hand,ν2(S(c2n, 2n + a)) = d(a) for a = 2n − 1, n ≥ 1 and c ≥ 2 as we will see in (9) of
Theorem 4.) We leave the proof to the reader but note that it is similar to that of Theorems 1 and 2. In
fact, after expandingS(c2n, 2n +a) = S((c−1)2n +2n, 2n +a) by identity (7) and focusing on the terms(
j
i

) (2n+a−i)!
(2n+a−j)!S((c− 1)2n, 2n +a− i)S(2n, j), 0 ≤ i ≤ j ≤ 2n, the 2-adic order of the terms can now be

easily calculated by Theorem 2. It isν2(
(
j
i

)
)+ν2((2n+a−i)!)−ν2((2n+a−j)!)+ν2(S((c−1)2n, 2n+

a−i))+ν2(S(2n, j)) ≥ 2n+a−i−d(2n+a−i)−(2n+a−j)+d(2n+a−j)+d(2n+a−i)−1+d(j)−1 ≥
j−i+d(2n+a)−2 = d(a)−1+j−i. (Here we used the fact thatd(2n+a−j)+d(j) ≥ d(2n+a).) Now
we can combine the terms with 2-adic ordersd(a)−1 andd(a) to yield the result. By a similar technique,
we can also prove thatν2(S(c2n + b, 2n + a)) ≥ d(a)− 2 for integersc ≥ 3 odd and1 ≤ b < a < 2n.
Note that the case witha = b is treated by Theorem 5.



4 Taḿas Lengyel

Note that ifc is even thenν2(S(c2n, 2n +a)) = d(a) for 1 ≤ a ≤ 2n−1 by Theorem 2. We can further
explore the subtle differences between the cases withc odd and even. Numerical experience suggests the
following somewhat surprising conjecture.

Conjecture 1 We haveν2(S((2r + 1)2n, 2n + a)) = d(a) + r for integersr ≥ 1, 1 ≤ a ≤ 2n−1, and
sufficiently largen.

We also state the following simplified and limited version of the conjecture. It assumes that the 2-adic
orderν2(a) of a and thus,n are large. We present its proof after that of Theorem 5.

Theorem 3 We haveν2(S(c2n, 2n+a)) = d(a)+ν2(c−1) for c ≥ 3 odd,1 ≤ a < 2n, if ν2(a)−d(a) >
ν2(c− 1) + 1.

3 Other properties
Numerical experimentations reveal other interesting properties of the Stirling numbers of the second kind
S(c2n, k). For example, we can slightly improve Theorem 2 for two special values ofk.

Theorem 4 Letn, c ∈ N andm be an integer,2 ≤ m ≤ n, then

S(c2n, 2m) ≡ 1 mod 4 (8)

and for2 ≤ m with c2n > 2m − 1,

S(c2n, 2m − 1) ≡ 3 · 2m−1 mod 2m+1. (9)

Proof of Theorem 4: For c = 1 (or any power of two), the proof of (8) is based on that of Theorem 1.
For other values ofc, the proof is similar to that of Theorem 2.

The proof of congruence (9), however, is rather different. We leave some details to the reader. The
cases withm = 2 and 3 are easy. Form ≥ 4, we use the generating function (cf. Comtet (1974))

fk(x) =
∞∑

n=0

S(n + k, k)xn =
1

(1− x)(1− 2x) · · · (1− kx)
(10)

with k = 2m − 1. The proof is based on the formal power series expansion offk(x) mod 2m+1. We
note that the coefficient ofxc2n−2m+1 is S(c2n, 2m − 1). We make two groups of the factors in the
denominator. It can be proven that form ≥ 3

2m−1∏
i=1

(1− (2i− 1)x) ≡ (1 + 3x2)2
m−2

mod 2m+1, (11)

and form ≥ 4
2m−1−1∏

i=1

(1− 2ix) ≡ 1 + 2m−1x + 2m−1x2 + 2mx4 mod 2m+1,

and thus,
1∏2m−1−1

i=1 (1− 2ix)
≡ 1 + 3 · 2m−1x + 3 · 2m−1x2 + 2mx4 mod 2m+1. (12)
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For example, to prove (11), we setgm+1(x) =
∏2m

i=1(1− (2i− 1)x). Clearly,g3(x) ≡ 1 + 6x2 + 9x4 ≡
(1 + 3x2)2 mod 16, g4(x) ≡ 1 + 12x2 + 22x4 + 12x6 + 17x8 ≡ (1 + 3x2)4 mod 32, and note that
in general, form ≥ 2, gm+1(x) =

∏2m

i=1(1 − (2i − 1)x) = gm(x)
∏2m

i=2m−1+1(1 − (2i − 1)x) =

gm(x)
∏2m−1

i=1 (1 − (2i − 1 + 2m)x) ≡ gm(x)(gm(x) − hm(x)) ≡ ((1 + 3x2)2
m−2

+ c12m+1)((1 +
3x2)2

m−2
+ c12m+1 − hm(x)) ≡ (1 + 3x2)2

m−1
mod 2m+2 with some integerc1 and hm(x) =

2mxgm(x)
(

1
1−x + 1

1−3x + · · ·+ 1
1−(2m−1)x

)
, by induction onm.

Here, we also relied on the fact that, for the power sumSj = 1j + 3j + · · · + (2m − 1)j we have
ν2(Sj) ≥ m− 1 ≥ 2 for m ≥ 3, which can be easily proven by induction onm (cf. Lengyel (2007)).

Recall that we need the coefficient ofxc2n−2m+1 in f2m−1(x) mod 2m+1. When combined, congru-

ences (11) and (12) giveA ≡ 3 · 2m−1(−3)i
(
2m−2+i−1

i

)
mod 2m+1 with i = (c2n − 2m)/2, makingi a

multiple of 2m−1. Noting that(−3)i ≡ 1 mod 2m+1 and
(
2m−2+i−1

i

)
≡ 1 mod 4, this implies thatA ≡

3 · 2m−1 mod 2m+1, i.e., the congruence (9). 2

Remark 3 We note that the congruence (9) does not require that the exponent n be at least as large as m
but that c2n > 2m − 1, and the proof makes no use of Theorem 2. This congruence allows us to prove
that

ν2(S(c2n + 1, 2m)) = m− 1. (13)

In fact, by the usual recurrence S(c2n + 1, 2m) = 2mS(c2n, 2m) + S(c2n, 2m − 1) and ν2(S(c2n, 2m −
1)) = m− 1, thus (13) follows.

The above proof of congruence (9) can be modified to yield the following

Theorem 5 Let a, b, and n ∈ N, b ≤ a, and n be sufficiently large (in terms ofa and b). Then the

2-adic order ofS(a2n, b2n) becomes constant asn →∞. In fact, withg(a, b) = ν2

(((2a−b)2n−2−1
(a−b)2n−1

))
=

d((a− b)2n−1) + d(b2n−2 − 1)− d((2a− b)2n−2 − 1) = d(a− b) + d(b− 1)− d(2a− b− 1), for any
n > max{2, g(a, b) + 1} we get that

ν2 (S(a2n, b2n)) = g(a, b), (14)

and in general,
ν2 (S(a2n + u, b2n + u)) = g(a + 1, b + 1),

independently ofu, for any integeru : 1 ≤ u < 2n as long asν2(u) > max{2, g(a + 1, b + 1) + 1}. The
periodicity ofg(a, b) yields thatν2 (S((a + 2t)2n, b2n)) = ν2 (S(a2n, b2n)) if t ≥ dlog2(2a − b)e is a
nonnegative integer.

Proof of Theorem 5: We need the coefficient ofx(a−b)2n

in fb2n(x) ≡ (1 + 3x2)−b2n−2
mod 2n−1 with

n ≥ 3, since here it is sufficient to combine congruences (11) and (12)mod 2n−1 rather thanmod 2n+1

for n ≥ 4. Also note that
∏3

i=1(1 − 2ix) ≡ 1 mod 4 for n = 3. It follows that the 2-adic order of the

coefficient is equal to that of
((2a−b)2n−2−1

(a−b)2n−1

)
, similarly to the proof of (9).

The proof for a generalu > 0 follows by writing u ast2q with q = ν2(u) < n and some oddt, 1 ≤
t < 2n−q. Therefore, for example,a2n + u = (a2n−q + t)2q, and thus, in identity (14), the parametersq,
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a2n−q + t, andb2n−q + t can play the role ofn, a, andb, respectively. In fact, with these values, we get
thatg(a2n−q + t, b2n−q + t) = d((a− b)2n−q) + d(b2n−q + t− 1)− d((2a− b)2n−q + t− 1) which
simplifies tod((a−b)2n−q)+d(b2n−q)−d((2a−b)2n−q) = d(a−b)+d(b)−d(2a−b) = g(a+1, b+1).
2

Theorem 5 seems to be a powerful tool for tackling the cases withn sufficiently large as is demon-
strated in the following proof. Note that the second part of Theorems 6 and 7 can also be handled via this
theorem similarly to the

Proof of Theorem 3: We write a = t2n−q with an oddt : 1 ≤ t ≤ 2q−1 and1 ≤ q ≤ n. We also
write c = o2r + 1 with an oddo andr = ν2(c − 1) ≥ 1. We setA = (o2r + 1)2q andB = 2q + t,
and apply Theorem 5 by replacing its parametersa, b andn with A, B andn− q, respectively. Note that
c2n = A2n−q and2n = B2n−q.

In fact, for a sufficiently largen−q we haveν2

(
S(A2n−q, B2n−q)

)
= d(A−B)+d(B−1)−d(2A−

B− 1) = d(o2r+q − t) + d(2q + t− 1)− d(o2r+q+1 + 2q+1− 2q − t− 1) = (d(o)− 1 + r + q− d(t) +
1) + (1 + d(t)− 1)− (d(o) + q− d(t) + 1− 1) = r + d(t) = ν2(c− 1) + d(a). We note that Theorem 5
assumes thatn− q = ν2(a) > max{2, g(A,B) + 1} = d(a) + ν2(c− 1) + 1. 2

In the next theorem, we obtain a lower bound onν2(S(c2n + u, 2n)) for any positive integeru. This
also extends relation (13) form = n, in some sense. It is worth noting thatν2(S(c2n, 2n)) = 0 has a very
different nature.

Theorem 6 Letn, u, c ∈ N, thenν2(S(c2n + u, 2n)) ≥ n− 1− blog2 uc. If u = 2m is a power of two,
with some integerm, 0 ≤ m ≤ n− 1, thenν2(S(c2n + 2m, 2n)) = n− 1−m.

We note that with the specializationu = 2n−a, a ≥ 1 integer, we get thatν2(S(c′2n−a, 2n)) = a − 1
for any integerc′ ≥ 2a, which includes the fact thatS(c′2n−1, 2n) is odd forc′ ≥ 2.

The previous theorem can be extended to other values to obtain

Theorem 7 Letn, k, u, c ∈ N, 1 ≤ k ≤ 2n, andu ≤ 2ν2(k), thenν2(S(c2n+u, k)) ≥ ν2(k)−blog2 uc+
d(k) − 2. Furthermore, ifu = 2m is a power of two, with some integerm, 0 ≤ m ≤ ν2(k) − 1, then
ν2(S(c2n + 2m, k)) = ν2(k)−m + d(k)− 2.

We might as well focus on thetth least significant binary digit ofk and obtain the following theorem
(which includes the first part of the previous theorem in the special caset = 1 which yields thatν2(k) =
mr−t+1).

Theorem 8 Let n, k, u, c, t ∈ N, 1 ≤ k ≤ 2n, 1 ≤ t ≤ r = d(k), andu ≤ 2mr−t+1 given the binary
expansionk = 2m1 + 2m2 + · · · + 2mr with m1 > m2 > · · · > mr ≥ 0. Thenν2(S(c2n + u, k)) ≥
d(k)− t + mr−t+1 − blog2 uc − 1.

Remark 4 In fact, for a givenu, within the scope of this theorem, we can freely pickt as long asu ≤
2mr−t+1 (thus, it will not apply ifu > k). Now we find that the largest lower bound on the 2-adic order is
achieved att = d(k), i.e.,ν2(S(c2n + u, k)) ≥ m1 − 1− blog2 uc for u ≤ 2m1 .
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4 Differences of Stirling numbers
Another interesting property is related to the differenceS(c2n+1, k)−S(c2n, k). It appears that its 2-adic
order increases by one asn increases by one, provided thatn is large enough. As a consequence, this
would imply thatν2(S(c2n, k)) becomes fix for some largen without explicitly indicating how small this
n can be. Of course, Theorem 2 and Remark 1 take care of answering this question. We note that there are
some conjectures on the structure of the sets{ν2(S(c2n + u, k))}c≥c0 , with c0 being minimum in order
to guaranteec02n +u ≥ k, as a function ofu for any fixedn andk in Amdeberhan et al. (2008). We state

Conjecture 2 Letn, k, a, b ∈ N, 3 ≤ k ≤ 2n, andc ≥ 1 be an odd integer, then

ν2(S(c2n+1, k)− S(c2n, k)) = n + 1− f(k) (15)

and
ν2(S(a2n, k)− S(b2n, k)) = n + 1 + ν2(a− b)− f(k) (16)

for some functionf(k) which is independent ofn (for any sufficiently largen).

Remark 5 The cases with k = 1 and 2 are rather different but trivial. In fact, S(n1, 1)−S(n2, 1) = 0 for
n1, n2 ∈ N and S(n1, 2) − S(n2, 2) = 2n2−1(2n1−n2 − 1) if n2 < n1, thus ν2(S(n1, 2) − S(n2, 2)) =
n2 − 1. The case with k = 4 follows by identity (6).

Remark 6 To illustrate the above conjecture, we prove a little more for k = 3. Observe that

S(n, 3) =
1
2
(3n−1 − 2n + 1), n ≥ 1.

Let us assume that a ≥ b. For n ≥ 3, the Lemma 1 below implies that

ν2 (S(a2n, 3)− S(b2n, 3)) = −1 + ν2

(
3(a−b)2n

− 1
)

= n + 1 + ν2(a− b),

and moreover, for n ≥ 3 and any nonnegative integer u

ν2 (S(a2n + u, 3)− S(b2n + u, 3)) = n + 1 + ν2(a− b).

It appears that there are only very few exceptions to (15) and (16) requiring the proviso on the large size
of n (and perhaps, there is none if we require that1 ≤ k ≤ 2n−1). Relations similar to (15) seem to
apply toν2(S(c2n+1 + u, k)− S(c2n + u, k)) for many nonnegative even integersu (cf. Remark 7 as an
illustration to this in a special case).

We are not able to prove Conjecture 2, except for small values ofk, e.g.,f(3) = 0 (cf. Remark 6),
f(4) = 0, f(5) = 2, andf(6) = 2 (by evaluating the expressions (20) and (22) using the method in the
proofs of Theorems 9 and 10). However, we have the supporting evidence given by Theorem 9 which also
suggests thatf(k) ≤ ν2(k!) − 1 if the conjectured identity (15) holds, and Theorem 11 guarantees the
much strongerf(k) ≤ dlog2 ke − 1. For small values ofk, numerical experimentation suggests that

f(k) = 1 + dlog2 ke − d(k)− δ(k), (17)

with δ(4) = 2 and otherwise it is zero except ifk is a power of two or one less, in which casesδ(k) = 1.
This would imply thatf(k) ≥ 0. It appears thatf(2m) = m− 1 for m ≥ 3. Note thatdlog2 ke − d(k) is
the number of zeros in the binary expansion ofk, unlessk is a power of two.
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Theorem 9 Letn, k ∈ N, 3 ≤ k ≤ 2n, u be a nonnegative integer, andc ≥ 1 be an odd integer, then

ν2(S(c2n+1 + u, k)− S(c2n + u, k)) ≥ n + 2− ν2(k!).

In the proof we use the following

Lemma 1 Letn, m ∈ N, andc ≥ 1 be an odd integer, then

ν2

(
(2m + 1)c2n

− 1
)

= n + 2 + ν2

((
m + 1

2

))
. (18)

Proof of Lemma 1: We factor the expression on the left side of (18):

(2m + 1)c2n − 1 =
(
(2m + 1)c2n−1 − 1

) (
(2m + 1)c2n−1

+ 1
)

=
(
(2m + 1)2c − 1

) ∏n−1
i=1

(
(2m + 1)c2i

+ 1
)

.
(19)

By the binomial expansion, each factor of the product can be rewritten as

(2m + 1)c2i

+ 1 = 1 + 2m

(
c2i

1

)
+ (2m)2

(
c2i

2

)
+ · · ·+ 1 ≡ 2 mod 4.

This implies that each factor contributes one to the 2-adic order. On the other hand, for the first factor of
the last expression in (19), we get thatν2

(
(2m + 1)2c − 1

)
= ν2((2m+1)c−1)+ν2 ((2m + 1)c + 1) =

ν2(m)+1+ν2 ((2m + 1)c + 1) = ν2(m)+1+ν2(m+1)+1 by binomial expansion and(2m+1)c+1 =
((2m + 1) + 1)((2m + 1)c−1 − (2m + 1)c−2 + · · ·+ 1). Putting together the factors of (19), the 2-adic
order becomesn + 1 + ν2(m) + ν2(m + 1). The proof is now complete. 2

By the well-known identity (cf. Comtet (1974)) forS(n, k)

k!S(n, k) =
k∑

i=0

(−1)k−i

(
k

i

)
in

it follows that

k!
(
S(c2n+1, k)− S(c2n, k)

)
=

k∑
i=0

(−1)i

(
k

i

)
(k − i)c2n

(
(k − i)c2n

− 1
)

. (20)

We note that Theorem 9 is the special case of

Theorem 10 Letn, k, a, b ∈ N, 3 ≤ k ≤ 2n, andu be a nonnegative integer, then

ν2(S(a2n + u, k)− S(b2n + u, k)) ≥ n + ν2(a− b) + 2− ν2(k!). (21)

Its proof is similar to that of the previous theorem. Assuming thata ≥ b we can replace (20) by

k! (S(a2n + u, k)− S(b2n + u, k)) =
k∑

i=0

(−1)i

(
k

i

)
(k − i)b2n+u

(
(k − i)(a−b)2n

− 1
)

, (22)

and the statement follows by Lemma 1.
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5 Towards the proof of the Conjecture 2
We cannot prove Conjecture 2 but we do make some progress in that direction, and at the same
time, we improve previously stated results, in general, and for the case whenk is a power of two,
in particular. We note that for a fixed value ofk, the smallest value ofn with 1 ≤ k ≤ 2n is
dlog2 ke, so by Theorem 2, the inequalitiesν2(S(c2n+1, k) − S(c2n, k)) ≥ n − dlog2 ke + d(k) and
ν2(S(a2n, k) − S(b2n, k)) ≥ n − dlog2 ke + d(k) hold for thisn. Moreover, by Theorem 4 and Re-
mark 6, we have thatν2(S(c2n+1, k) − S(c2n, k)) ≥ n − dlog2 ke + d(k) + δ(k) = n + 1 − f(k) for
thisn. This agrees with (17) although in terms of a lower bound rather than the equality in (15).

One possibility for proving Conjecture 2 might be to use differences based on identity (7) or on the
congruence by Junod (2002)

Bm+npν (x) ≡
n∑

j=0

(
n

j

)
(xp + xp2

+ · · ·+ xpν

)n−jBm+j(x) (mod
np

2
Zp[x]) (23)

with p = 2 and proper specializations of the parametersm,n andν (m,n ≥ 0 andν ≥ 1 integers), where
the Bell polynomials are defined (cf. Junod (2002)) by

Bn(x) =
n∑

k=0

S(n, k)xk, n ≥ 0.

We now prove one of our main results, the following weaker version of Conjecture 2, which still improves
Theorems 9 and 10 fork ≥ 3, and it puts us withind(k) + δ(k)− 2 < log2 k of the conjecture (although
with some restriction in case of equation (16)).

Note that Theorems 12 and 13 completely prove the conjecture fork ≥ 5 if d(k) ≤ 2 andu = 0. (In
this case equation holds in (24).) The cases withk ≤ 6 are taken care of by the comments made onf(k)
after Remark 6.

Theorem 11 Letn, k ∈ N, 3 ≤ k ≤ 2n, u be a nonnegative integer, andc ≥ 1 be an odd integer, then

ν2(S(c2n+1 + u, k)− S(c2n + u, k)) ≥ n− dlog2 ke+ 2. (24)

Moreover, leta, b ∈ N anda/2 ≤ b < a, then

ν2(S(a2n + u, k)− S(b2n + u, k)) ≥ n + ν2(a− b)− dlog2 ke+ 2. (25)

Proof of Theorem 11:To prove (24), we use (23) withp = 2,m = u, ν = 1, andn replaced byc2n, and
consider the coefficients ofxk:

S(c2n+1 + u, k)
≡

∑c2n

j=0

(
c2n

j

)
S(j + u, k − 2(c2n − j))

≡ S(c2n + u, k) +
∑c2n−1

j=c2n−d k
2 e+1

(
c2n

j

)
S(j + u, k − 2(c2n − j)) mod 2n,

(26)
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since we observe thatk−2(c2n−j) > 0 implies thatj > c2n−dk
2 e. Clearly, in the given range of values

j = c2n − dk
2 e + v, 1 ≤ v < dk

2 e ≤ 2n−1, we haveν2

((
c2n

j

))
= ν2

((
c2n

d k
2 e−v

))
= n − ν2(dk

2 e − v) ≥
n−(dlog2 ke−2). We note that ifu = 0, k ≥ 5, andd(k) ≤ 2 then equality holds in (24) by Theorems 12
and 13.

This proof also applies to (25) withp = 2,m = (2b− a)2n + u, ν = 1, andn replaced by(a− b)2n.
Again, we consider the coefficients ofxk and get that

S(a2n + u, k) ≡ S(b2n + u, k) +
∑(a−b)2n−1

j=(a−b)2n−d k
2 e+1

(
(a−b)2n

j

)
×

×S(j + (2b− a)2n + u, k − 2((a− b)2n − j)) mod 2n+ν2(a−b),

and the proof follows as above withj = (a− b)2n−dk
2 e+v, 1 ≤ v < dk

2 e ≤ 2n−1 andν2

((
(a−b)2n

j

))
=

ν2

(((a−b)2n

d k
2 e−v

))
= n+ν2(a−b)−ν2(dk

2 e−v) ≥ n+ν2(a−b)−(dlog2 ke−2). Note thatk ≤ 2n+ν2(a−b)

suffices. 2

Now we illustrate a more involved application of (23) to prove equation (15) of Conjecture 2 ifk ≥ 8
is a power of two. (Other powers of two are settled in Remark 5.) We note that this provides a refinement
of a direct consequence of equation (8) of Theorem 4.

Theorem 12 Letm ≥ 3 be an integer, then

ν2(S(2m+1, 2m)− S(2m, 2m)) = 2, (27)

and in general, for an integern ≥ m ≥ 3 and odd integerc ≥ 1, we get

ν2(S(c2n+1, 2m)− S(c2n, 2m)) = n−m + 2. (28)

We mention that Conjecture 2 and equation (17) suggest thatν2(S(c2n+1, 2m − 1)− S(c2n, 2m − 1)) =
n + 1 for n ≥ m ≥ 2 and oddc ≥ 1. Note the striking contrast to (28) in terms ofm.

Proof of Theorem 12: To prove identity (27), we use (23) withp = 2,m = 0, ν = 1, andn replaced by
2m, and consider the coefficients ofx2m

in

B2m+1(x) ≡
2m∑
j=0

(
2m

j

)
x2(2m−j)Bj(x) mod 2m,

i.e., S(2m+1, 2m) ≡ S(2m, 2m) +
∑2m−1

j=2m−1+1

(
2m

j

)
S(j, 2m − 2(2m − j)) mod 2m. The 2-adic order

of a general term of the summation with indexj, provided thatν2(j) = s < m − 1, is m − s +
ν2(S(c′2s, c′2s+1−2m)) ≥ m−s, with some oddc′ ≥ 1. The smallest such order ism−(m−2) = 2 < m
with the uniquej = 3 · 2m−2 (by Theorem 6 withc = 1, n = m − 1, andu = 2m−2). Identity (27)
follows.

In general, withn ≥ m andc = 1, we use the above parameters in (23) except that now we replace
n by 2n rather than by2m. Similarly to the above proof, it can be shown that(2n−m+2 − 1)2m−2 =
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2n − 2m−2 is the unique indexj that results in a termT with 2-adic valuation as small asn −m + 2 <

n. In fact, ν2

((
2n

(2n−m+2−1)2m−2

))
= n−m + 2, andT is an odd multiple of2n−m+2S((2n−m+2 −

1)2m−2, 2m−1). This yields (28) by Theorem 6.
The proof withn ≥ m and a general oddc ≥ 1 is similar to the previous case but nown is replaced by

c2n. Herec2n − 2m−2 is the unique indexj betweenc2n − 2m−1 + 1 andc2n − 1 whose term achieves
the smallest valuationn−m + 2.

We note that the structure of the 2-adic valuation of the terms shows a remarkably simple pattern.2

Remark 7 The above proof can be extended to apply toν2(S(c2n+1 +u, 2m)−S(c2n +u, 2m)) if u ≥ 0
is an integer multiple of2m−2, i.e.,

ν2(S(c2n+1 + d2m−2, 2m)− S(c2n + d2m−2, 2m)) = n−m + 2,

for integersn ≥ m ≥ 3, d ≥ 0, and odd integerc ≥ 1.

The previous theorem can be modified to yield

Theorem 13 For integersn > m1 ≥ 2, m1 > m2 ≥ 0, and odd integerc ≥ 1, we get

ν2(S(c2n+1, 2m1 + 2m2)− S(c2n, 2m1 + 2m2)) = n−m1 + 1. (29)

Proof of Theorem 13: The proof is similar to that of the previous theorem. Herec2n − 2m1−1 is the
unique indexj betweenc2n−2m1−1−2m2−1 +1 andc2n−1 whose term achieves the smallest valuation
n−m1 + 1. 2

6 Other primes
In this paper, we have aimed at divisibility properties byp = 2. However, it is worth mentioning that some
of the congruences of the previous section can be generalized. For example, for illustrative purposes, we
prove the modification of Theorem 11.

Theorem 14 Letp ≥ 3 be a prime,c, n, k ∈ N with 1 ≤ k ≤ pn and(c, p) = 1, andu be a nonnegative
integer, then

νp(S(cpn+1 + u, k)− S(cpn + u, k)) ≥ n− dlogp ke+ 2. (30)

Moreover, leta, b ∈ N anda/p ≤ b < a, then

νp(S(apn + u, k)− S(bpn + u, k)) ≥ n + νp(a− b)− dlogp ke+ 2. (31)

Proof of Theorem 14: We use identity (23) withm = u, ν = 1, the actual primep, andn replaced by
cpn. We consider the coefficients ofxk:

S(cpn+1 + u, k)
≡

∑cpn

j=0

(
cpn

j

)
S (j + u, k − p (cpn − j))

≡ S(cpn + u, k)
+

∑cpn−1

j=cpn−d k
p e+1

(
cpn

j

)
S (j + u, k − p (cpn − j)) mod pn+1,
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as we observe thatk − p(cpn − j) > 0 implies thatj > cpn − dk
p e. Clearly, in the given range of values

j = cpn − dk
p e + v, 1 ≤ v < dk

p e ≤ pn−1, we haveνp

((
cpn

j

))
= νp

(( cpn

d k
p e−v

))
= n − νp(dk

p e − v) ≥
n− (dlogp ke − 2).

The proof of inequality (31) is similar to that of (30) and (25). 2

We note the relation to some results in Gessel and Lengyel (2001). In fact, Theorem 2 of Gessel and
Lengyel (2001) claims that ifu = 0, c is a multiple ofp− 1, andk is an odd multiple ofp then the lower
bound in Theorem 14 can be improved.
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