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On the 2-adic order of Stirling numbers of the
second kind and their differences
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Let n and k be positive integersd(k) and v2(k) denote the number of ones in the binary representation
of k and the highest power of two dividing, respectively. De Wannemacker recently proved for the Stir-
ling numbers of the second kind that(S(2",k)) = d(k) — 1,1 < k < 2". Here we prove that
v2(S(e2™,k)) = d(k) — 1,1 < k < 2", for any positive integee. We improve and extend this statement in
some special cases. For the difference, we obtain lower bounds(6tic2" " + u, k) — S(c2" + u, k)) for

any nonnegative integer, make a conjecture on the exact order andufet 0, prove part of it wherk < 6,

ork > 5 andd(k) < 2.

The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and
Bell polynomials, and some divisibility properties.
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1 Introduction

The study ofp-adic properties of Stirling numbers of the second kind is full with challenging problems.
Lengyel (1994) proved that
va(S(2", k) = d(k) — 1 @)
for all sufficiently largen, and in factn > k — 2 suffices and conjectured that(S (2", k)) = d(k) — 1
for all values ofk : 1 < k < 2™. The conjecture was eventually proved by De Wannemacker.

Theorem 1 (De Wannemacker((2005)) Letn, k € Nand1 < k& < 2™. Then we have
va(S(2", k) = d(k) — 1. @

Related results fok < 5 can be found i Amdeberhan et/al. (2008). We generalize De Wannemacker's
proof in Sectiorf . We obtain related results in Secfipn 3. For example, we prove that the 2-adic
order of S(a2™,b2™) becomes constant as — oo for any positive integers > b. As a new di-
rection of investigation, we study the differences of Stirling numbers in Sefcfion 4. Lower bounds on
va (S(e2" ! + u, k) — S(c2™ + u, k)) for any nonnegative integerand a conjecture on the exact order
are presented. Far= 0, we prove the conjecture provided thaK 6, ork > 5 andd(k) < 2.
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The proofs rely on the use of identify] (7) by De Wannemacker (2005), the inclusion-exclusion principle
based calculatiof (20) of the Stirling numbers, their generating fun¢tign (10) and a family of congruential
identities for Bell polynomialg (23) by Junod (2002). Secfibn 5 utilize$ (23) to improve previous results.
Sectior] § shows that some of the results can be extended to primes other than two.

We note that Flajolet (1982), and Gertsch and Robert (1996) also use formal power series or umbral
calculus based techniques to prove divisibility properties.

Exact 2-adic orders are determined in Theorgip$[2-5, 7[ afd]12-13. As a summary, we note that the
2-adic ordens (S (a2™ + u, b2™ + v)) is discussed with the particular triplét, v, b) of parameters. In
general, exact values are obtained (except in Reijark 2 in which we determine lower bounds on the
2-adic orders). For instancé),2™ — 1,0) (or (1,2™,0)), 2 < m < log,(a2™ + 1), in Theoren{ i
(or in RemarK B);(0,2™,0),2 < m < n, in Theoren{ #;(u, u,b),0 < u < 2", in Theoren{ p; and
(2m,0,1),0<m <n-—1,in Theorenﬂi; potentially with some other extra assumptions.

In this paper, we include the proofs of the theorems or their sketches if they use generating function or
power series based arguments but omit some other proofs.

We note that generating functions (Secfi¢n 3) and related formal power series (§gction 5) based tech-
nigues outlined in this paper might lead to improved congruential identjtiadjc results, or their alter-
native proofs involving other combinatorial quantities, their lacunary series, and their differences, often
proved by other methods.

2 A generalization
Theorem 2 Letn,k,c € Nandl < k < 2", then

v (S(c2™, k)) = d(k) — 1. 3
Remark 1 In other words, for any fixed k > 1, we have that v5(S(c2",k)) = d(k) — 1 if n > [log, k.
Without loss of generality, we may assume that c is an odd integer (otherwise, we can factor c into a power
of two and an odd integer). Note that we obtain

v2(S(4¢,5)) >2>1=4d(5) -1 (4)

for ¢ > 1 odd by (Amdeberhan et al.,|2008, formula (3.1))

1
S(n,5) = ﬂ(5"*1 —4n 2.3 —2" 1) n> 1 (5)

For the generalization of (4) see Remark[2 In a similar fashion,

1
S(n,4) = 6(4”*1 —3" 3.2 1), n>1, (6)
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proves that S(c, 4) is even if ¢ is odd (Amdeberhan et al.,|2008, identity (2.14)) while d(4) — 1 = 0. Also,
S(c2™, 2" — 1) = (022") and therefore,

v (S(e2™,e2" —1)=n—-1<n<d(c2"-1)—-1=n+d(c) —

forn > 1,c¢ > 1 odd. More involved cases of a different type are covered by Theorems [ and[7 Thus,
we cannot expect to extend Theorems and[?] beyond the range 1 < k < 2", i.e., [log, k] < n. On the
other hand, we mention some extensions in Remark[2

Proof of Theorem[Z: The proof is by induction or(c). The initial case is withi(c) = 1, i.e., whenc2"
is a power of two, and it is taken care of by Theofgm 1.

Ford(c) > 2, we use the identity from (De Wannemacker, 2005, Theorem 2)

k Kk . .
S(n+m, k) ZZ (Z) ((:_;))!!S(n,ki)S(m,j) (7)

which plays a crucial role in the proof of Theoréin 1 in De Wannemacker (2005). Assumg]that (3) holds
forall ¢ > 1 with d(c) < d — 1 for somed > 2. We prove that it holds for alt with d(c) = d. In fact, let

¢'2™ be the highest power of two containedc*. Then we can write2” as the sum’2" + (¢ — ¢/)2",

and by [7) we get that

k
S(2" 4+ (e — 2™ k) = ZZ( ) : 192"k — i) S((c = )2", )

=0 j=1

sinced(c’) = 1,d(c— ) =d(c) —1 < d — 1, andk — i, j < 2". By the induction hypothesis
va(S(c'2™ k —i)S((c — )2", 7)) = d(k — i) + d(j) —

and the proof proceeds exactly the same way &s in (De Wannerracker, 2005, Section 3). )

Remark 2 We can generalize inequality|(4) and find that in general i§ an integer such that <

a < 2" — 2 thenwy(S(e2™,2™ + a)) > d(a) + 1 > d(a) = d(2" + a) — 1 for ¢ > 3 odd. (On the

other hand, v, (S(c2",2" + a)) = d(a) fora = 2" —1,n > 1 andc > 2 as we will see in[(9) of
Theorenj .) We leave the proof to the reader but note that it is similar to that of Thelgremg L and 2. In
fact, after expanding(c2",2" +a) = S((c—1)2"+2", 2" +a) by identity () and focusing on the terms

() ez S((e—1)2",2" +a—)S(2",5),0 < i < j < 2", the 2-adic order of the terms can now be

easily calculated by Theore@ 2. 1tis((2)) +v2((2" +a—10)!) —va((2" +a—5)1) +12(S((c—1)2", 2" +

—1))+a(S(2™,4)) > 2”+a—i—d(2"+a—i)—(2"+a—j)+d(2”+a J)+d(2"+a—i)—1+d(5)—1 >
Jj—i+d(2"+a)—2 = d(a)—1+j—i. (Here we used the fact thd(2" +a—j)+d(j) > d(2"+a).) Now
we can combine the terms with 2-adic ordé(g) — 1 andd(a) to yield the result. By a similar technique,
we can also prove thaty (S(c2™ + b,2" + a)) > d(a) — 2 for integersc > 3 odd andl < b < a < 2".
Note that the case witlh = b is treated by Theorefr 5.
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Note that ifc is even them, (S(c2",2" +a)) = d(a) for 1 < a < 2" —1 by Theorenj P. We can further
explore the subtle differences between the casesathd and even. Numerical experience suggests the
following somewhat surprising conjecture.

Conjecture 1 We haves (S((2" + 1)27,2" + a)) = d(a) + r for integersr > 1,1 < a < 271, and
sufficiently largen.

We also state the following simplified and limited version of the conjecture. It assumes that the 2-adic
orderi,(a) of a and thusy are large. We present its proof after that of Theo@m 5.

Theorem 3 We have,(S(c2",2"+a)) = d(a)+v2(c—1)forc > 30dd,1 < a < 27, if va(a) —d(a) >
va(c—1)+1.

3 Other properties

Numerical experimentations reveal other interesting properties of the Stirling numbers of the second kind
S(e2™, k). For example, we can slightly improve Theorgn 2 for two special valués of

Theorem 4 Letn, c € Nandm be an integer2 < m < n, then
S(c2™,2™) =1 mod 4 (8)
and for2 < m with ¢2™ > 2™ — 1,

S(c2",2™ —1)=3-2"" mod 2™ 9)

Proof of Theorem[4: For ¢ = 1 (or any power of two), the proof of[8) is based on that of Thedrém 1.
For other values of, the proof is similar to that of Theorem 2.

The proof of congruenc¢](9), however, is rather different. We leave some details to the reader. The
cases withn = 2 and 3 are easy. Fon > 4, we use the generating function (cf. Comtet (1974))

oo

fe(@) =D S(n+k k)a" =

n=0

1
1-2)1—-2z) - (1 —kzx)

(10)

with & = 2™ — 1. The proof is based on the formal power series expansiofi @f) mod 2™+, We
note that the coefficient of*2"~2"+1 is §(c2",2™ — 1). We make two groups of the factors in the
denominator. It can be proven that far > 3

27n—1
IT (0 - 2i—1)2) = (1 +32%)>" " mod 27+, (11)
i=1
and form > 4
2'm71_1
[T (-2ix)=1+2""2+27 "2 + 272" mod 27,
=1
and thus,

1

ST =1+3-2"" g +3.-2" 122 + 272" mod 2™+, (12)
- 1—2ix
i=1
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For example, to provl), we gt 1 (z) = [[°2, (1 — (2i — 1)z). Clearly,gs(z) = 1+ 62% 4+ 9z* =
(14 32%)2 mod 16, g4(z) = 1 + 1222 + 222* + 1225 + 172% = (1 + 322)? mod 32, and note that
in general, form > 2, gni1(2) = [12,(1 — (20 — 1)z) = gm(x) Hf:2m,_1+1(1 —(2i — Dz) =
9m () Hf"l (1= (20 = 14 2™)2) = gu(2)(gm() = hm(x)) = (143222 + 2™+ ((1 +
322)2" 7 4 27T — b (x) = (1 + 322)2" 'mod 212 with some integere; and h, (z) =
2" &g () (ﬁ + et ﬁ) by induction onn.

Here, we also relied on the fact that, for the power stym= 17 + 37 + --- + (2™ — 1)/ we have
12(S;) > m—1 > 2form > 3, which can be easily proven by induction on(cf. |[Lengyel (2007)).

Recall that we need the coefficient:o" 2"+ in fom _;(x) mod 2™*!. When combined, congru-
ences) an2) givé = 3. 2m=1(=3)7 (" "7 1) mod 2m+1 with § = (2" — 2™)/2, makingi a
multiple of 2™~1. Noting that(—3)? = 1 mod 2™+! and(2m72“*1) = 1 mod 4, this implies thatd =

(2

3-2m~1 mod 2™+, i.e., the congruencg|(9). -

Remark 3 We note that the congruence (9) does not require that the exponent n, be at least as large as m
but that c2™ > 2™ — 1, and the proof makes no use of Theorem[2, This congruence allows us to prove
that

ve(S(e2" +1,2™)) =m — 1. (13)
In fact, by the usual recurrence S(c2™ + 1,2™) = 2™S(c2™,2™) + S(c2™, 2™ — 1) and v5(S(c2™, 2™ —
1)) =m — 1, thus follows.

The above proof of congruendg (9) can be modified to yield the following

Theorem 5 Leta,b, andn € N, b < a, andn be sufficiently large (in terms af andb). Then the
2-adic order ofS (a2, b2") becomes constant as— oc. In fact, withg(a, b) = v, (((2?;”;)2;_21_1)) =
d((a—0)2""1) +d(2" 2 - 1) —d((2a — b)2" 2 —1) = d(a — b) + d(b—1) — d(2a — b — 1), for any
n > max{2, g(a,b) + 1} we get that

9] (S(a’2n7 b2n)) = g(av b)7 (14)
and in general,
vo (S(a2" + u,b2" +u)) = gla+ 1,0+ 1),

independently of,, for any integen:: 1 < u < 2" as long as»s (u) > max{2,g(a + 1,0+ 1) + 1}. The
periodicity ofg(a, b) yields thatv, (S((a + 2%)2™,2")) = vy (S(a2™,b2")) if t > [logy(2a — b)] is a
nonnegative integer.

Proof of Theorem@ We need the coefficient af®=2" in fyon () = (1 + 32%) 72" mod 2"~ with
n > 3, since here it is sufficient to combine congruen¢e$ (11) [andr(t2) 2" ! rather thanmod 2"+!
for n > 4. Also note thaf>_, (1 — 2m) = 1lmod4forn = 3. It follows that the 2-adic order of the

coefficient is equal to thatc(2“ b2 pyan—1 "), similarly to the proof of).

The proof for a general > 0 follows by writing v ast2? with ¢ = v»(u) < n and some odd, 1 <
t < 2"~ 9. Therefore, for example2™ + v = (a2"~ 7 +¢)29, and thus, in identit4), the parameters
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a2"~9 4+ t, andb2™~? + t can play the role of, a, andb, respectively. In fact, with these values, we get
thatg(a2" =7 4+ ¢,b2"~9 +t) = d((a — b)2"~9) 4+ d(b2" 1 +t — 1) — d((2a — b)2"~9 4+t — 1) which
simplifies tod((a—0)2"~9)+d(b2" %) —d((2a—b)2"" %) = d(a—b)+d(b)—d(2a—b) = g(a+1,b+1).

a

Theoren| b seems to be a powerful tool for tackling the casesnwébfficiently large as is demon-
strated in the following proof. Note that the second part of Theoféms B]and 7 can also be handled via this
theorem similarly to the

Proof of Theorem[3: We writea = #2"~9 with an oddt : 1 < ¢ < 297! and1 < ¢ < n. We also
write ¢ = 02" + 1 with an oddo andr = v5(c — 1) > 1. We setd = (02" + 1)22 andB = 29 + ¢,
and apply Theorefn|5 by replacing its parameteisandn with A, B andn — ¢, respectively. Note that
2™ = A2" "7 and2" = B2"71,

In fact, for a sufficiently large: — g we havev, (S(A2"~%, B2"~4)) = d(A— B)+d(B—1) —d(2A—
B—1)=d(02"" —t) +d(29+t —1) —d(02" 91 + 29T — 20—t —1) = (d(0) — 1 +7+q—d(t) +
)+ (1+d(t)—1)—(d(o) +q—d(t)+1—1) =r+d(t) = vo(c— 1) + d(a). We note that Theoref} 5
assumes that — ¢ = v5(a) > max{2,9(A,B) + 1} = d(a) + v2(c— 1) + 1. O

In the next theorem, we obtain a lower bound:eS(c2™ + u,2™)) for any positive integet.. This
also extends relatiop (IL3) far = n, in some sense. It is worth noting that(.S(c2",2")) = 0 has a very
different nature.

Theorem 6 Letn,u,c € N, thenvy(S(e2™ + u,2™)) > n — 1 — |logy u]. If w = 2™ is a power of two,
with some integem, 0 < m <n — 1, thenv,y(S(c2™ 4+ 2™,2™)) =n — 1 —m.

We note that with the specialization= 2"~ a > 1 integer, we get thaty(S(c/2"*,2")) = a — 1
for any integer’ > 22, which includes the fact that(c’2" 1, 2") is odd forc’ > 2.

The previous theorem can be extended to other values to obtain

Theorem 7 Letn, k,u,c € N,1 < k < 2", andu < 2"2(F) thenvy (S (2" 4-u, k)) > va (k) — |logy u] +
d(k) — 2. Furthermore, ifu = 2™ is a power of two, with some integer,0 < m < vy(k) — 1, then
va(S(e2™ + 2™ k) = va(k) —m + d(k) — 2.

We might as well focus on thih least significant binary digit of and obtain the following theorem
(which includes the first part of the previous theorem in the specialtcase which yields that, (k) =

mr7t+1)-

Theorem 8 Letn, k,u,c,t € N, 1 <k <2" 1<t <r =d(k),andu < 2™+ given the binary
expansionk = 2™t +2™2 4 ... 4 2™ withmy > mg > -+- > m, > 0. Thenvy(S(c2™ 4+ u, k)) >
d(k) —t+my_ty1 — [loggu] — 1.

Remark 4 In fact, for a givenu, within the scope of this theorem, we can freely pias long asu <
2mr—t+1 (thus, it will not apply ifu > k). Now we find that the largest lower bound on the 2-adic order is
achieved at = d(k), i.e.,v2(S(c2™ + u, k)) > mq — 1 — |logy u| for u < 2™,
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4 Differences of Stirling numbers

Another interesting property is related to the differef¢e2" 1, k) — S(c2", k). It appears that its 2-adic

order increases by one asincreases by one, provided thats large enough. As a consequence, this
would imply thatvs (S(c2™, k)) becomes fix for some largewithout explicitly indicating how small this

n can be. Of course, Theorérm 2 and Reniark 1 take care of answering this question. We note that there are
some conjectures on the structure of the $et$5(c2™ + u, k)) }e>c,, With ¢o being minimum in order

to guaranteey2™ +u > k, as a function of, for any fixedn andk in|JAmdeberhan et all (2008). We state

Conjecture 2 Letn,k,a,b € N,3 < k < 2™, andc > 1 be an odd integer, then
va(S(e2" k) — S(e2™, k) =n+ 1 — f(k) (15)
and
va(S(a2™, k) — S(b2™,k)) =n+ 1+ ve(a—b) — f(k) (16)
for some functiory (k) which is independent of (for any sufficiently large:).

Remark 5 The cases with k = 1 and 2 are rather different but trivial. In fact, S(ny,1) —S(ng,1) = 0 for
ni1,n2 € Nand S(nq,2) — S(ng,2) = 2m271(2m "2 — 1) ifny < ny, thus v2(S(n1,2) — S(ng,2)) =
ng — 1. The case with k = 4 follows by identity (6).

Remark 6 To illustrate the above conjecture, we prove a little more for k = 3. Observe that
S(n,3) = %(3"—1 —2"+1), n>1
Let us assume that a > b. Forn > 3, the Lemma below implies that
vy (S(a2”,3) — S(b2",3)) = —1 + 11 (3<a—b>2" - 1) —n+1+ws(a—b),
and moreover, for n > 3 and any nonnegative integer u
v (S(a2™ 4+ u,3) — S(b2" + u,3)) =n+ 1+ va(a —b).

It appears that there are only very few exception$ t (15)[arjd (16) requiring the proviso on the large size
of n (and perhaps, there is none if we require that & < 27~'). Relations similar to@S) seem to
apply tovo (S(c2™+t + u, k) — S(c2™ + u, k)) for many nonnegative even integerscf. Remarl{}’ as an
illustration to this in a special case).

We are not able to prove Conject@e 2, except for small valuds efg., f(3) = 0 (cf. Remarlﬂi),
f(4) =0, f(5) =2, andf(6) = 2 (by evaluating the expressiorjs [20) ahd| (22) using the method in the
proofs of Theorenis|9 afnd[10). However, we have the supporting evidence given by Theorem 9 which also
suggests thaf (k) < v»(k!) — 1 if the conjectured identity] (35) holds, and Theoren 11 guarantees the
much strongerf (k) < [log, k] — 1. For small values of, numerical experimentation suggests that

f(k) =1+ [logy k| — d(k) — o(k), 17

with §(4) = 2 and otherwise it is zero exceptifis a power of two or one less, in which cagés) = 1.
This would imply thatf (k) > 0. It appears thaf(2™) = m — 1 for m > 3. Note that[log, k] — d(k) is
the number of zeros in the binary expansiorkpfinlessk is a power of two.



8 Tanmas Lengyel

Theorem 9 Letn, k € N,3 < k < 2", u be a nonnegative integer, ard> 1 be an odd integer, then
va(S(c2" us k) — S(c2" +u, k) > n 42— vo(k!).

In the proof we use the following
Lemma l Letn,m € N, andc > 1 be an odd integer, then

v ((2m+1)62”—1):n+2+y2<<m;’1>>. (18)

Proof of Lemmal[l]: We factor the expression on the left side[of](18):

@m+1)2" —1 = ((2m F1)e - 1) ((2m +1)e 15 )

= (@m+ 0> =) TS (@m+1)2 +1

By the binomial expansion, each factor of the product can be rewritten as
o 2! o [ 2 _
2m+1)* +1=142m 1 + (2m) 9 +---+1=2mod 4.

This implies that each factor contributes one to the 2-adic order. On the other hand, for the first factor of
the last expression ifi ([L9), we get that((2m + 1) — 1) = v5((2m+1)°—1)+vp (2m + 1)° +1) =
vo(m)+1+vse (2m + 1)° 4+ 1) = va(m)+1+v2(m+1)+1 by binomial expansion an@m+1)°+1 =

(2m+ 1)+ 1)((2m + 1)°~L — (2m + 1)°=2 + -+ + 1). Putting together the factors ¢f (19), the 2-adic
order becomes + 1 + v5(m) + vo(m + 1). The proof is now complete. O

By the well-known identity (cf. Comtet (1974)) fdt(n, k)

k

kIS(n k) = (=1)F (’Z) "

=0

it follows that

k k
K(S(c2™ k) - S(e2, k) = Y (~1)f ( ) (k — )" ((k — ) 1) . (20)

=0
We note that Theorefrj 9 is the special case of
Theorem 10 Letn, k,a,b € N, 3 < k < 2", andu be a honnegative integer, then

v2(S(a2™ +u, k) — S(b2" + u, k)) > n+ va(a —b) + 2 — v (k!). (21)
Its proof is similar to that of the previous theorem. Assuming thatb we can replacg (20) by

?

k
k! (S(a2™ + u, k) — S(b2" + u, k) = Z(_w‘(

=0

and the statement follows by Lemina 1.



On the 2-adic order of Stirling numbers of the second kind and their differences 9

5 Towards the proof of the Conjecture

We cannot prove Conjectufg 2 but we do make some progress in that direction, and at the same
time, we improve previously stated results, in general, and for the case wigem power of two,

in particular. We note that for a fixed value &f the smallest value of with 1 < k£ < 2" is

[log, k], so by Theorer]2, the inequalities(S(c2" 1, k) — S(c2",k)) > n — [log, k] + d(k) and
vo(S(a2™, k) — S(b2™, k)) > n — [log, k] + d(k) hold for thisn. Moreover, by Theorern|4 and Re-
mark[§, we have that, (S(c2"*1, k) — S(c2",k)) > n — [logy k] + d(k) + 6(k) = n + 1 — f(k) for

thisn. This agrees witl (17) although in terms of a lower bound rather than the equa|ity in (15).

One possibility for proving Conjectufg 2 might be to use differences based on id€ftity (7) or on the
congruence by Junbd (2002)

n

D@ =3 (1) 4 4+ B (0) (mod Dyl (@D
=0

with p = 2 and proper specializations of the parameters andv (m,n > 0 andv > 1 integers), where
the Bell polynomials are defined (¢f. Junod (2002)) by

B, (z) = ZS(n,k)xk,n > 0.
k=0

We now prove one of our main results, the following weaker version of Conjddture 2, which still improves
Theorem$ P and 10 fdr > 3, and it puts us withinl(k) + d(k) — 2 < log, k of the conjecture (although
with some restriction in case of equatipn](16)).

Note that Theoren{s 12 ahd]|13 completely prove the conjecture foi5 if d(k) < 2 andu = 0. (In
this case equation holds 24).) The cases Wwith 6 are taken care of by the comments madef Oh)
after Remarkd6.

Theorem 11 Letn, k € N,3 < k < 2", u be a nonnegative integer, ard> 1 be an odd integer, then
va(S(c2™ ™ 4 u, k) — S(c2" +u, k) > n — [logy k] + 2. (24)
Moreover, leta,b € Nanda/2 < b < a, then

vo(S(a2™ + u, k) — S(b2" + u, k)) > n+ va(a — b) — [logy k] + 2. (25)

Proof of Theorem[1]: To prove [24), we us¢ (23) with= 2, m = u, v = 1, andn replaced by:2", and
consider the coefficients af*:
S(e2™tt +u k)
=320 (2)SG + u k- 2(c2" — §)) (26)

= S(c2™ +u, k) + Z?féﬁgm (®")S( +u, k —2(c2" — 5)) mod 2",
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since we observe that—2(c2" — j) > 0implies thatj > 2" — [%1 . Clearly, in the given range of values

j=c2 8] +u, 1 <v < [E] <277 we havens (%)) = va((;£]0,) = n — (5] —v) =

n—([log, k] —2). We note thatits = 0,k > 5, andd(k) < 2 then equality holds ifj (24) by Theorefng 12
and13.

This proof also applies t (25) with= 2, m = (2b — a)2" + u,v = 1, andn replaced by(a — b)2".
Again, we consider the coefficients of and get that

n — n (a—b)2™—1 a—>b)2"

S(a2™ + u, k) = S(b2" + u, k) + Zj:(a_b)zn_%wﬂ (( j) )%

xS(j+ (2b — a)2" 4+ u, k — 2((a — b)2" — j)) mod 2nF¥z(a=b),

and the proof follows as above wifh= (a—b)2" — [4] +v,1 < v < [£] < 27! andy2((<“—j’?)2")) -

VQ(((Fé]b)_QS)) =n+wva(a—b) —ug([g] —v) > n+vo(a—b)—([log, k] —2). Note thatk < 2n+vz(a=b)

suffices. O
Now we illustrate a more involved application pf[23) to prove equafioh (15) of Conjgdture 2 i8

is a power of two. (Other powers of two are settled in Rerpiirk 5.) We note that this provides a refinement
of a direct consequence of equatiph (8) of Thedrém 4.

Theorem 12 Letm > 3 be an integer, then
v (S(2mH 2m) — §(2™ 2™)) = 2, (27)
and in general, for an integet > m > 3 and odd integer > 1, we get

va(S(c2" T 2™) — §(c2",2™)) = n —m + 2. (28)

We mention that Conjectufé 2 and equatfor] (17) suggestafig(c2m+t, 2™ — 1) — S(c2",2™ — 1)) =
n+ 1forn >m > 2and oddc > 1. Note the striking contrast tp (28) in termssof

Proof of Theorem[12: To prove identity[(2]), we usg (R3) with= 2, m = 0,» = 1, andn replaced by
2™ and consider the coefficients et in

om

2m m_;
Bom+i(x) = Z ( ) )x2(2 =9 B;(x) mod 2™,

=0 7

e, S(2mH 2m) = S(2m, 2m) + YR (%) S0, 2™ — 2(2™ — j)) mod 2. The 2-adic order
of a general term of the summation with indgxprovided thatvs(j) = s < m — 1,ism — s +
vo(S(c/2%,¢'25F1—2™)) > m—s, with some odd’ > 1. The smallest such ordenis—(m—2) =2 < m
with the uniquej = 3 - 22 (by Theorenj p withe = 1, n = m — 1, andu = 2™~2). Identity [27)
follows.

In general, withn > m andc = 1, we use the above parameters[in| (23) except that now we replace

n by 2" rather than by2™. Similarly to the above proof, it can be shown tifat—"+2 — 1)2m~2 =
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2n — 2™=2 js the unique indey that results in a terrfi’ with 2-adic valuation as small as— m + 2 <
n. In fact, v, (((znwwfil)gmz)) = n—m+2, andT is an odd multiple o~ +25((2n—m+2 —

1)2m=2 2m=1), This yields[(2B) by Theorerh| 6.

The proof withn > m and a general odd > 1 is similar to the previous case but news replaced by
c2". Herec2™ — 2™~2 s the unique indey between:2" — 2™~ + 1 andc2™ — 1 whose term achieves
the smallest valuation — m + 2.

We note that the structure of the 2-adic valuation of the terms shows a remarkably simple pattern.

Remark 7 The above proof can be extended to apply-e (2" +u, 2™) — S(c2" +u, 2™)) if u > 0
is an integer multiple o2™~2, i.e.,

va(S(c2" Tt 4 d2m 72 2™) — S(e2™ +d2™ 2 2™)) =n —m + 2,

forintegersn > m > 3,d > 0, and odd integet > 1.
The previous theorem can be modified to yield
Theorem 13 For integersn > my > 2, m; > mo > 0, and odd integet: > 1, we get

V2(5(02n+1’ 9m1 + 2m2) _ S(CQ”, 9m1 + 2m2)> =n—-—mj+ 1. (29)

Proof of Theorem[13: The proof is similar to that of the previous theorem. He2e — 21~1 is the
unique indexj between:2" —2m1—1 _2m2=1 4 1 andc2™ — 1 whose term achieves the smallest valuation
n—mq+ 1. O

6 Other primes

In this paper, we have aimed at divisibility propertieghy: 2. However, it is worth mentioning that some
of the congruences of the previous section can be generalized. For example, for illustrative purposes, we
prove the modification of Theorgm]11.

Theorem 14 Letp > 3 be aprimeg,n, k € Nwith1 < k£ < p™ and(c¢, p) = 1, andu be a nonnegative
integer, then
vp(S(ep™™ +u, k) — S(ep™ + u, k) > n — [log, k] + 2. (30)

Moreover, leta, b € Nanda/p < b < a, then

vp(S(ap™ +u, k) — S(bp" +u, k) > n+wvy(a—0b) — [log, k| + 2. (31)

Proof of Theorem[I4: We use identity[(23) withn = u,v = 1, the actual prime, andn replaced by
cp™. We consider the coefficients of :

S(ep™tt +u, k)
=200 (5)S (G +uk —p(ep” = 5)
= S(ep™ + u, k)
‘*‘Z;ic;"l’—f%]ﬂ (7)S (G +uk —p(cp™ - j)) mod p"*t,
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as we observe thét— p(cp™ — j) > 0 implies thatj > ¢p™ — [%1. Clearly, in the given range of values
j=a" =[5+ vl <v < [5] <p*, we haven, (%)) = v (((£,) = n — (51 —v) >

n — ([log, k] — 2).
The proof of inequality[(31) is similar to that ¢f (30) afd(25). 0

We note the relation to some results in Gessel and Lehgyel (2001). In fact, Theorem 2 of Gessel and
Lengyel (2001) claims that if = 0, c is a multiple ofp — 1, andk is an odd multiple op then the lower
bound in Theorerp 14 can be improved.
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