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Abstract

Lengyel, T., On some properties of the series
P1

k=0 k
nxk and the Stirling numbers of the second kind

We partially characterize the rational numbers x and integers n � 0 for which the sum
P1

k=0 k
nxk assumes

integers. We prove that if
P1

k=0 k
nxk is an integer for x = 1� a=b with a; b > 0 integers and gcd(a; b) = 1;

then a = 1 or 2. Partial results and conjectures are given which indicate for which b and n it is an integer

if a = 2: The proof is based on lower bounds on the multiplicities of factors of the Stirling number of the

second kind, S(n; k): More speci�cally, we obtain �a
�
(n� k)! S(n; n� k)

�
� �a(n!)� k+1 for all integers

k; 2 � k � n; and a � 3; provided a is odd or divisible by 4, where �a(m) denotes the exponent of the

highest power of a which divides m; for m and a > 1 integers.

New identities are also derived for the Stirling numbers, e.g., we show that
P2n

k=0 k!S(2n; k)
�
� 1

2

�k
= 0,

for all integers n � 1:

1. Introduction

It is known [2] that the sum
P1

k=0 k
n=2k is integer for every n � 0 integer. For n � 16; there is an easy way

to calculate its value ([2], [9], and [13]) by taking the nearest integer to n!
�
ln 2

��n�1
: This observation gives rise

to the question on what rational number x and integer n � 0 the sum
P1

k=0 k
nxk assumes an integer and whether

there is a simple way to calculate its value.

We set f(x; n) =
P1

k=0 k
nxk for n � 1; and f(x; 0) = 1=(1 � x) for n = 0: Note that the series converges

if jxj < 1: The function f has some fascinating properties. The study of these properties is motivated by the

observation that f(x; n) assumes integers at many di�erent values of x and n. For instance, as we noted, f(1=2; n)

is always an integer. In fact, it is equal to 2
Pn

k=1 k!S(n; k):

Clearly, f(x; 0) is an integer if and only if x = 1 � 1=m where m is an arbitrary positive integer. From now

on we assume that n � 1: By Comtet ([2], p. 245), for every positive integer n we obtain that

(1) f(x; n) =
An(x)

(1� x)n+1
;

where An(x) =
Pn

k=1A(n; k)x
k is called the Eulerian polynomial and A(n; k) stands for the Eulerian number.

Equation (1) implies that f(x; n) is rational if x is rational. By simple algebra, identity (1) yields that f(1�1=m; n)

is an integer multiple of m for every n: In most cases we substitute 1� a=b for x, with positive integers a and b, in

studying f(x; n): From now on any rational number x will be meant in the lowest terms, i.e., if x = 1� a=b then

we assume that gcd(a; b) = 1:
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We express f(x; n) in terms of a sum involving Stirling numbers. It turns out that the divisibility properties of

S(n; k) play an important role in analyzing f(x; n): In Section 2 we give a lower bound on the highest power of

a � 3 which divides (n � k)!S(n; n � k); for small values of k provided a is odd or divisible by 4. In Sections

3 and 4 we prove conditions for f(x; n) to be an integer (Theorems 5, 6, 8, and 14). For example, we show that

f(1�a=b; n) cannot be an integer unless a � 2: Su�cient conditions are also given con�rming that there are always

solutions if n is even. Section 4 is devoted to the study of function f; and some new identities for the Stirling

numbers are derived (Corollary 10{13). For instance, we prove that
P2n

k=0 k!S(2n; k)
�
� 1

2

�k
= 0, for all integers

n � 1: In Section 5 we propose conjectures on f(x; n) and briey discuss some asymptotics for f(x; n) which help

in calculating its value for a particular set of rational values x and integers n.

2. Basic tools

We de�ne the integer-valued function �a(r) for all positive integers r and a > 1 by �a(r) = q; where aq jr; and

aq+1j= r: Clearly, �a(r) � �p(r); for every prime factor p of a: Let p be a prime and dp(k) be the sum of the digits

in the p-ary representation of k. By Legendre's lemma [2], �p(n!) =
n�dp(n)

p�1 � n� 1, therefore n+ 1� �a(n!) � 2;

for every pair of positive integers n and a � 2: Note that �2(n!) = n � d2(n):

We rewrite identity (1) in the equivalent form ([2], p. 244)

(2) f(x; n) = x

nX
k=1

k!S(n; k)(x� 1)n�k=(1� x)n+1 = x

nX
k=1

k!S(n; k)(�1)n�k(1� x)�k�1:

The divisibility properties of S(n; k) have been studied in [12], [3], [10], [1], and [8]. Davis [3], Lundell [10], and

Clarke [1] obtained their results by studying the divisibility properties of the closely related partial Stirling numbers.

Methods have been proposed for computing �p
�
(n�k)!S(n; n�k)

�
though most of them are calculation-intensive

and depend on the particular values of the parameters p; n; and k. For our purposes a fairly general lower bound

on the multiplicities of the divisors of S(n; k) will su�ce.

In this section we give a lower bound on �a
�
(n� k)!S(n; n� k)

�
and prove Lemma 1 which will be essential in

proving Theorem 9.

Lemma 1. For every n � 1 the identity f(x; n) = (�1)n+1f(1=x; n) holds for the formal power series f(x; n)

and f(1=x; n):

Proof. We note that A(n; k) counts the number of permutations of [n] with k � 1 rises, k = 1; 2; : : : ; n: By

identity (1) and using the symmetry A(n; k) = A(n; n� k + 1) the statement follows.

Note that f(1=x; n) is a formal power series and it is convergent for 8x : jxj > 1: We shall need the following

Theorem 2. For every prime p � 3 and integer k : 1 � k � n;

�p
�
S(n; n � k)

�
�

dp(n� k) � dp(n)� k � (p� 2)

p� 1
+ 1:

More precisely, we prove

Theorem 3. For all integers k : 1 � k � n; and odd a � 3;

(3) �a
�
(n� k)!S(n; n� k)

�
� �a(n!)� k + 1:
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For a � 3 with �2(a) � 2; the inequality (3) holds for k : 2 � k � n: On the other hand, for k = 1 we have

�a
�
(n� 1)!S(n; n� 1)

�
= �a

�
n!(n� 1)=2

�
� �a(n!)� 1:

Remark 4. Note that Theorem 2 is a special case of Theorem 3. Of course, �a
�
(n � k)!S(n; n � k)

�
�

�a
�
(n � k)!

�
is a trivial lower bound on �a

�
(n � k)!S(n; n � k)

�
. In the applications of inequality (3) we want

�a(n!)� k+ 1 � �a
�
(n� k)!

�
: Thus we might restrict the range of k to small values. In fact, Theorem 2 vacuously

holds if k > p�1
p�2blogp nc+ 2; and the same applies to Theorem 3 with the smallest prime divisor p � 3 of a.

We apply Theorem 3 to prove Theorem 6.

Proof of Theorem 3. We shall use the notion of the associated Stirling numbers of the second kind. The

associated Stirling number of the second kind, Sr(n; k); is the number of partitions of an n-element set, into k

blocks, all of cardinality at least r: Clearly, Sr(n; k) is an integer and S(n; k) = S1(n; k): We use the following

identity ([11] and [5]) which gives a simple relation between ordinary and associated Stirling numbers.

If 1 � k � n=2 then

(4) S(n; n� k) =
kX

j=0

�
n

2k � j

�
S2(2k � j; k � j):

For 0 � n� 2k + j � n� k; the selection of n � 2k + j one-element blocks can be done in
�

n

2k�j

�
ways and the

remaining 2k � j elements must be partitioned into k � j blocks, with at least 2 elements in each block. Hence

identity (4) follows. By expanding this identity and noting that S2(n; k) is always an integer, we derive that, for

0 � j � k;

(5) �p
�
(n� k)!S(n; n� k)

�
� min

0�j�k
�p

�
(n� k)!

�
n

k + j

��
:

We give a lower bound on the right-hand side of inequality (5). Observe that (n�k)!
�

n

k+j

�
= (n�k)! n!

(k+j)! (n�k�j)! =
(n�k)!

(n�k�j)!
(2k)!
(k+j)!

n!
(2k)! is a multiple of n!

(2k)! : We have

(6) �p
�
(n� k)!S(n; n� k)

�
� �p(n!)� �p

�
(2k)!

�
:

By Legendre's lemma [2], for every prime p � 3; �p
�
(2k)!

�
=

2k�dp(2k)
p�1 � 2k�2

p�1 = 2
p�1(k � 1) � k � 1 since 2k is

even. We have just proved inequality

(7) �p
�
(n� k)!S(n; n � k)

�
� �p(n!)� k + 1

for every prime p � 3. (The case k > n=2 follows easily as we will see it later.)

If a � 3 has no prime factor greater than 2 then it is a power of 2, say a = 2m; m � 2: For k; 1 � k � 3; the

proof of the theorem is straightforward by expanding S(n; n � k). Otherwise we observe that

(8)
l�2((2k)!)

m

m
�
l�2((2k)!)

2

m
=
l2k � d2(2k)

2

m
� k � 1;

except for k = 2l; l = 1; 2; : : : in which case we get
l
�2((2k)!)

m

m
� k: We recall, however, that we ignored the factor

(n�k)!
(n�k�j)!

(2k)!
(k+j)! in the process of deducing inequality (6). This factor is divisible by 8 if k � 4. For, we notice that
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either j = k yields that (n�k)!
(n�k�j)! is a multiply of 8 or j < k yields the same thing for (2k)!

(k+j)! = 2k (2k�1)!
(k+j)! : By the

above observations and inequality (6), we now derive

�2m
�
(n � k)!S(n; n� k)

�
=
j�2�(n� k)!S(n; n� k)

�
m

k
�
j�2(n!)� �2

�
(2k)!

�
+ 3

m

k
�

�
j�2(n!)

m

k
�
l�2�(2k)!�� 3

m

m
�
j�2(n!)

m

k
�
l�2�(2k)!�� 3

2

m
=

=
j�2(n!)

m

k
�
l�2�(2k)!�� 1

2

m
+ 1 �

j�2(n!)
m

k
� (k � 1) + 1 = �2m(n!)� k + 2;

for 4 � k � n=2 and a = 2m;m � 2:

On the other hand, if a � 3 is odd then

�a
�
(n � k)!S(n; n� k)

�
= min

p: pja
m=�p(a)

j�p�(n� k)!S(n; n� k)
�

m

k
� min

p: pja
m=�p(a)

j�p(n!)� �p
�
(2k)!

�
m

k
�

� min
p: pja

m=�p(a)

�j�p(n!)
m

k
�
l�p�(2k)!�

m

m�
�

� min
p: pja

m=�p(a)

j�p(n!)
m

k
� k + 1 = �a(n!)� k + 1;

by inequalities (6), (7), and (8). Similarly, if a is divisible by 4 then we derive �a
�
(n�k)!S(n; n�k)

�
� �a(n!)�k+1;

by taking the minimum for all odd prime divisors of a and p = 2 with m = �2(a); and applying the previous

paragraph.

If k � n=2 then �a
�
(n�k)!

�
� 0 � �a(n!)��a

�
(2k)!

�
holds, and �a(m) � �p(m) implies �a

�
(2k)!

�
� �p

�
(2k)!

�
�

k � 1 and inequality (3). (Note that by Remark 4 this case can be ignored.)

We note that the case in which a = p = 2 has been studied in [8]. We proved

Theorem A. ([8], Theorem 1) Let c � 0 be an odd integer. There exists a function f(k) � k�2 such that for all

positive integers k and n � f(k); we have �2
�
k!S(c � 2n; k)

�
= k� 1; or equivalently, �2

�
S(c � 2n; k)

�
= d2(k)� 1:

We also proposed

Conjecture B. For all k and 1 � k � 2n, �2
�
S(2n; k)

�
= d2(k)� 1:

3. Results

We give conditions on a; b; and n which will guarantee that f(1 � a=b; n) is an integer. To illustrate the

discussion we start with the case of a = 2; and substitute x = 1 � a=b = 1 � 2=(2l + 1) into identity (2). We

rewrite f
�
1 � 2=(2l + 1); n

�
; n � 1; using identity (2) and the binomial expansion of (2l + 1)k. The change of

the order of summations yields

(9)

f
�
1�

2

2l + 1
; n
�
= (l � 1=2)

nX
k=1

k!S(n; k)(�1)n�k
�2l + 1

2

�k

= (�1)n (l � 1=2)
nX

k=1

k!S(n; k)(�1=2)k
kX

j=0

�
k

j

�
(2l)j

= (�1)n (l � 1=2)
nX

j=0

(2l)j
nX

k=j

�
k

j

�
k!S(n; k)(�1=2)k:
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Examples. We consider the cases of n = 3; 6; 7; and 13: The analysis is fairly simple for n = 3 and 7; and we

obtain

f
�
1�

2

2l + 1
; 3
�
=

1

8
� 2l2 + 6l4;

and

f
�
1�

2

2l + 1
; 7
�
=

17

16
� 62l2 + 756l4 � 3360l6 + 5040l8:

These expansions show that the function f cannot be an integer at 1� 2=(2l+ 1):

For n = 6 we get

f
�
1�

2

2l + 1
; 6
�
=
�17l

4
+ 77l3 � 420l5 + 720l7

which implies the necessary and su�cient condition for f
�
1� 2=(2l+1); 6

�
to be an integer. The condition is that

l must be a multiple of 4, i.e., x = 1� 2=(8m+ 1):

The case of n = 13 results in

f
�
1�

2

2l + 1
; 13

�
=�

5461

4
+

929569l2

4
+ Cl4;

with some integer multiplier C; hence 4 f(1 � 2=(2l + 1); 13) � 3 + l2 (mod 4): It follows that f
�
1� 2=b; 13

�
is

an integer if and only if b = 4m+ 3 with some integer m � 0:

The �rst two examples are special cases of the following

Theorem 5. For s � 0; f(1 � 2=b; 2s � 1) cannot be an integer.

We also prove that only the case of a = 2 should be considered.

Theorem 6. For n � 0; f(1 � a=b; n) cannot be an integer if a > 2:

Recall that a=b is meant in lowest terms. Observe that the case of s = 0 in Theorem 5 and that of n = 0 in

Theorem 6 are trivial since we have set f(x; 0) = 1=(1� x): These two theorems lead to necessary conditions for

f(x; n) to be an integer as they are summarized in

Corollary 7. The value of the function f(x; n) can be an integer only if

(a) 1� x = 1
b
; or

(b) 1� x = 2
b
in lowest terms, and n + 1 is not a power of 2:

On the other hand, a su�cient condition is given by

Theorem 8. The function f(x; n) assumes integers for 1� x = 2
4m+1 ; m � 1 and n � 2 if n is a power of 2

provided that Conjecture B is true.

Proof of Theorem 8. In identity (9), we expand the sum by the index j. As we will see in Theorem 9, if

n is even then the term with j = 0 vanishes. For j � 2, every term is an integer regardless of the parity of l by

Conjecture B. If l is even then the remaining term with j = 1 becomes an integer, too.
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We note that the above mentioned examples show that f
�
1� 2

8m+1 ; 6
�
and f

�
1� 2

4m+3 ; 13
�
are integers for any

integer m � 1. Before presenting the proof of Theorems 5 and 6 we sketch the main idea. By identity (2) we get

(10) f(1 � a=b; n) =
b� a

b

nX
k=1

k!S(n; k)(�1)n�k
� b
a

�k+1

:

We assume that f(1�a=b; n) is an integer, and analyze its divisibility by r; a properly selected divisor of a. We can

discard the factor b�a
b

on the right-hand side, for, both b� a and b are relatively prime to a. In both cases we will

see that the exponent of r in the last or last two terms on the right-hand side of (10) is negative and less than that

in any other term. This fact will prevent f(1 � a=b; n) from being an integer. The proofs follow by contradiction.

Now we can complete the two proofs.

Proof of Theorem 5. We set r = a = 2 and n = 2s� 1. For the exponents of 2 in the terms on the right hand

side of (10) we have �2
�
k!S(n; k)=2k+1

�
= (k�d2(k))+�2

�
S(n; k)

�
� (k+1) = �1�d2(k)+�2

�
S(n; k)

�
� �1� s;

1 � k � 2s � 1: Notice that the exponent of 2 in the last term with k = n is less than that in any other term. For

it is negative, the sum cannot be an integer.

Proof of Theorem 6. By inequality (7), if 0 � k � n� 1 and r � 3 is a prime divisor of a; then

�r
�
k!S(n; k)

�
� �r(n!)�(n�k)+1: We set l = �r(a): It follows that �r

�
k!S(n; k)=ak+1

�
> �r(n!)�(n�k)�l(k+1) �

�r(n!) � l(n + 1); i.e., �r
�
k!S(n; k)=ak+1

�
as a function of k; 1 � k � n, attains its unique minimum at k = n:

The minimum is negative; therefore, the sum in identity (10) cannot be an integer.

If a = 2m;m � 2; then we set r = a and l = �r(a) = 1. By Theorem 3, if 0 � k � n� 2 then �r
�
k!S(n; k)

�
�

�r(n!)� (n�k)+1: In this case, we obtain �r
�
k!S(n; k)=ak+1

�
> �r(n!)� (n�k)� (k+1) � �r(n!)� (n+1): The

exponent of the term with k = n� 1 can be as little as that of the last term which is �r(n!)� (n+1): However, we

can conclude the proof by noticing that the exponent of the sum of the last two terms in (10) is �r(n!)� (n + 1):

In fact, we have

�(n � 1)!S(n; n� 1)
bn

an
+ n!S(n; n)

bn+1

an+1
=

n!

an+1
bn
�
� a

n� 1

2
+ b

�
;

and the last two factors are non-zero integers and relatively prime to a.

4. Identities for Stirling numbers

We have seen in the examples that f
�
1� 2=(2l+1); 3

�
; f

�
1� 2=(2l+1); 7

�
; and f

�
1� 2=(2l+1); 13

�
are even

functions of l, while f(1 � 2=(2l+ 1); 6) is odd. These observations are generalized in

Theorem 9. For every integer n � 0; f
�
1�2=(2l + 1); n

�
is a polynomial in l; in particular, f

�
1�2=(2l + 1); n

�
is an even (resp. odd) function when n is odd (resp. even).

Proof of Theorem 9. Clearly, f
�
1 � 2=(2l+ 1); n

�
is a polynomial in l. Observe that if x = 1 � 2=(2l + 1)

then 1=x = 1 � 2=
�
(�2l) + 1

�
: Lemma 1 implies that f

�
1� 2=(2l + 1); 2n

�
= �f

�
1� 2=

�
(�2l) + 1

�
; 2n

�
;

i.e., f
�
1 � 2=(2l + 1); 2n

�
is an odd function of l, and similarly, the relation f

�
1 � 2=(2l + 1); 2n + 1

�
=

f
�
1� 2=

�
(�2l) + 1

�
; 2n+ 1

�
implies that f

�
1� 2=(2l + 1); 2n+ 1

�
is an even function of l:

We set a(n; j) = (�1)n
Pn

k=j

�
k

j

�
k!S(n; k)(�1=2)k: Clearly, a(n; n) = n!=2n; and a(n; j) = 0 if j > n: We will

see that a(2n; 0) = 0 (n � 1) and some other identities for a(n; j) in Corollaries 10-13.
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After rearranging the terms in (9) according to the powers of l, we get the representation of f
�
1� 2

2l+1 ; n
�
as

a polynomial in l, i.e.,

(11)

f(1 �
2

2l + 1
; n) = (l �

1

2
)

nX
j=0

(2l)ja(n; j) =
nX

j=0

2jlj+1a(n; j)�
nX

j=0

2j�1lja(n; j)

= �
a(n; 0)

2
+
n nX

j=1

2j�1lj
�
a(n; j � 1)� a(n; j)

�o
+ n! ln+1:

By Theorem 9, we obtain the following two corollaries for the coe�cient of lj.

Corollary 10. a(2n; 0) =
P2n

k=0 k!S(2n; k)
�
� 1

2

�k
= 0; n = 1; 2; : : : :

Corollary 11. For every n = 1; 2; : : : and m = 0; 1; 2; : : :

(12)
2nX

k=2m+1

�
k

2m+ 1

�
k!S(2n; k)(�1=2)k =

2nX
k=2m+2

�
k

2m + 2

�
k!S(2n; k)(�1=2)k;

i.e., a(2n; 2m+ 1) = a(2n; 2m+ 2); and

(13)
2n�1X
k=2m

�
k

2m

�
k!S(2n� 1; k)(�1=2)k =

2n�1X
k=2m+1

�
k

2m + 1

�
k!S(2n� 1; k)(�1=2)k;

i.e., a(2n� 1; 2m) = a(2n� 1; 2m+ 1):

There is a direct derivation of Corollary 10 as it was pointed out by Knuth [6]. It turns out that a(n; 0) is equal

to (2� 2n+2)Bn+1=(n+1); where Bn denotes the nth Bernoulli number, proving Corollary 10. Note that a(n; 0) is

closely related to the nth tangent number [4], and determining the exact denominator of a(n; 0) is the content of

Exercise 6.24 in [4]. For the exponential generating function of 2na(n; j) one can deduce the remarkable formula

([6])
1X
n=0

2na(n; j)zn=n! = (tanh z)j + (tanh z)j+1:

The summation over j of these generating functions yields

(1 + tanh z) + (tanh z + tanh2 z) + � � � = �1 + 2=(1� tanh z) = e2z;

con�rming

Corollary 12. For every n � 0;
Pn

j=0 a(n; j) = 1:

We note that a(n; j) can be determined by taking the coe�cients of n�s in the Dirichlet series of the func-

tion
P1

k=j

�
k

j

��
�(s) � 1

�k
yk at y = �1=2, where �(s) denotes the Riemann zeta-function. Yet another proof of

Corollary 10 follows by an application of Lambert series and Dirichlet products.

By Corollary 10 and the basic recurrence for the Stirling numbers we get

Corollary 13. a(2n+ 1; 0) = �a(2n; 1)=2; if n � 1, and a(2n+ 2; 1) = a(2n+ 1; 1)� a(2n+ 1; 2); if n � 0:
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In order to �gure out whether f
�
1� 2=(2l + 1); n

�
is an integer or not, it is enough to check whether

(14) (l �
1

2
)

blog2(n+1)cX
j=0

(2l)ja(n; j)

is an integer. In fact, there exists a j0 = j0(k) such that, for every j � j0; the term (2l)j

2

(kj)k!S(n;k)
2k

in the

expansion of 1
2(2l)

ja(n; j) is an integer. We get

(15) �2

� (2l)j
2

�
k
j

�
k!S(n; k)

2k

�
= j�2(l) + j � 1� d2(k) + �2

��k
j

�
S(n; k)

�
:

The order is at least j�2(l) + j � 1 � d2(k): In particular, for every l; j�2(l) + j � 1 � d2(k) � j � 1 � d2(k);

therefore, any j0 will su�ce provided j0 � 1 � blog2(k + 1)c: If j � blog2(n+ 1)c + 1 then the corresponding

terms contribute integers only to the sum. In fact, Corollary 10 and identity (15) lead us to a more general condition

on l. We choose l such that �2(l) � d2(k) and get

Theorem 14. For all n even, there exists an integer q0 = q0(n) such that f(x; n) is integer if x = 1 � 2
2qm+1

provided q � q0: The function q0(n) can be chosen to be blog2(n+ 1)c+ 1:

5. Conjectures and asymptotic evaluation

It seems rather di�cult to completely characterize all solutions (b; n) for which f(1 � 2=b; n) is an integer. We

propose two conjectures

CONJECTURE C. For n odd, f(x; n) is an integer if x = 1 � 1
m

with m � 1; or n � 13 (mod 64) and

x = 1� 2=(4m+ 3) with m � 0:

We checked all integer solutions for x = 1� 2
b

where b � 100 and n � 300: For n odd we found only two more

sets of integer solutions, more speci�cally, f(1 � 2
8m+5

; 61) and f(1 � 2
16m+9

; 253) are integers.

Assume that m � 1: Numerical evidence suggests

CONJECTURE D. For n even, f(x; n) is integer if one of the following eight conditions is satis�ed:

(i) x = 1� 1
m
;

(ii) n � 0 (mod 4) and n 6� 28 (mod 32) and x = 1� 2
2m+1 ;

(iii) n � 2 (mod 16) and x = 1� 2
4m+1 ;

(iv) n � 6 (mod 16) and x = 1� 2
8m+1 ;

(v) n � 10 (mod 16) and x = 1� 2
4m+1 ;

(vi) n � 14 (mod 32) and x = 1� 2
16m+1 :

(vii) n � 30 (mod 64) and x = 1� 2
32m+1 :

(viii) n � 62 (mod 128) and x = 1� 2
64m+1 :

For n � 28 (mod 32) and n 6= 252; f
�
1� 2

4m+1 ; n
�
; while for n = 252, f(1 � 2

8m+1 ; n) are integers.

Note that case (v) can be extended for n = 122, and f
�
1� 2

2m+1 ; 122
�

assumes integers. We found no other

solution for b � 100 and n � 300 where n is even.
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We could not �nd any odd 3 � b � 100 which would make f(1 � 2=b; 126) or f(1 � 2=b; 254) an integer. By

Theorem 14, however, f
�
1� 2

27m+1 ; 126
�
and f

�
1� 2

28m+1 ; 254
�

are integers for m � 1:

Notice the periodic structure of the integer solutions. A possible explanation might follow from the periodic

nature of the sequence fS(n; k) (mod 2d2(k))gn�0 (cf. Kwong [7]).

We conclude this discussion with a remark on the asymptotic evaluation of f(x; n): It is well known [2] that the

exponential generating function of f(x; n) has the form

1X
n=0

f(x; n)
tn

n!
=

1

1� xet
:

By standard techniques (e.g., [13], Theorem 5.2.1) for obtaining asymptotics of the coe�cients in the Laurent

expansion of a meromorphic function we obtain

Theorem 15. For 0 < x < 1; f(x; n) � n!
(� ln x)n+1

; as n!1:

For instance, f(x; n) = n!
n

1
(� ln x)n+1 + O

�
Cn+1

�o
; for every C > 1

2� � 0:159 positive number as n ! 1:

Actually, it is true that ���f(x; n)� n!
1

(� lnx)n+1

��� � Kn!

j1� xj
Cn+1;

with arbitrary K > 1. This relation helps in calculating f(x; n) for small n and su�ciently large 1� x provided

f(x; n) is an integer. For instance, if 1 � l � 25 and n � 15 then f
�
1�2=(2l+1); n

�
can be easily computed this

way. In fact, the approximation is so good in this case that f(x; n) is equal to the closest integer to n!(� lnx)�n�1.

We leave the details of the proof to the reader. Note that the asymptotic treatment o�ers no help in testing whether

a particular value f(x; n) is integer or not.
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