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Difference Equations and Divisibility Properties of Sequences
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There are many different ways of defining a sequence in terms of solutions to difference
equations. In fact, if a sequence satisfies one recurrence then it satisfies an infinite number
of recurrences. Arithmetic properties of an integral sequence are often studied by direct
methods based on the combinatorial or algebraic definition of the numbers or using their
generating function. The rational generating function is the main tool in obtaining various
difference equations with coefficients and initial values exhibiting divisibility patterns
that can imply particular arithmetic properties of the solutions. In this process we face
the challenging task of finding difference equations that are relevant to the divisibility
properties by transforming the original rational generating function. As a matter of fact,
it is not necessarily the simple difference equation which helps the most in proving the
properties. We illustrate this process on several examples and a sequence involving a
p-sected binomial sum of the form yn = yn(p, a) =

∑∞
k=0

(
n
kp

)
ak where p is an arbitrary

prime. Let ρp(m) denote the exponent of the highest power of a prime p which divides
m. Recently, the author obtained lower bounds for ρp(yn) based on recurrence relations
of order p and p− 1. The cases with tight bounds have also been characterized.

In this paper we prove that ρp(ynp(p, a)) = n for ρp(a + 1) = 1, p ≥ 3. We obtain
alternative difference equations of order p2 for yn and order p for the p-sected sequence
ynp by a generating function based method. We also extend general divisibility results
relying on the arithmetic properties of the coefficients and initial values.
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1. INTRODUCTION

We view a recurrent sequence as a solution to a linear difference equation with constant
coefficients. The study of the various properties of recurrent sequences including arith-
metic properties such as periodicity, congruences, and divisibility is often based on their
generating functions. We illustrate this approach on different sequences and a specific
integral sequence defined as a p-sected sum. A rather different aspect of p-secting a
power series is that it may provide an important technical tool in focusing on particular
arithmetic details of the original sequence. In addition, the p-section turns the original
difference equation into another one without increasing its order. We focus on results
related to the p-sected sum yn(p, a) =

∑∞
k=0

(
n
kp

)
ak involving binomial coefficients. This

sum is of independent interest. We note that it is not immediately obvious that yn(p, a)
should satisfy a recurrence with constant coefficients. Basic and alternative difference
equations will be derived in Section 5 that will make this fact clear. Section 2 is devoted
to examples to highlight the inherent differences of recurrent sequences from the point of
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view of divisibility. The generating function method is illustrated and applied to congru-
ences and periodicity in Section 3. In Section 4 we develop and discuss fairly general tools
for proving divisibility properties. Section 5 contains the main and some related results.
Their derivation is based on the development of basic and alternative difference equations
for yn(p, a).

2. BASIC NOTATIONS AND EXAMPLES

Let the integral sequence yn satisfy the recurrence relation of order d with integer coeffi-
cients ci

yn =
d∑

i=1

ciyn−i, n ≥ d + 1. (1)

Let ρp(m) denote the exponent of the highest power of a prime p which divides m. We set
ρp(0) = ∞ and ρp(u/v) = ρp(u)−ρp(v) if both u and v are integers. Let dp(k) be the sum
of the digits in the base p representation of k. As it often turns out ρp(yd) and ρp(cd) play
an important role in the analysis of ρp(yn). We illustrate the basic differences in results
and treatments of difference equations by presenting some examples. These examples are
similar in appearance but rather different in nature. They aim at divisibility by 3. In
Examples 1 and 2 this choice is arbitrary. The other two examples can be easily modified
to discuss divisibility by other primes.

Example 1 Consider the following difference equation yn = −yn−1+yn−2+yn−3, n ≥ 3,
with the initial conditions y0 = 0, y1 = 1, y2 = −1. Our goal is to calculate ρ3(y720).

Example 2 We shall determine ρ3(yn) and yn for the solution to the difference equation
yn = yn−1 + yn−2, n ≥ 2, with the initial conditions y0 = 0, y1 = 1.

Example 3 Consider the following difference equation yn = 3yn−1 − 3yn−2, n ≥ 3,
with the initial conditions y0 = y1 = y2 = 1. Determine or at least give some bounds on
the values of ρ3(yn) and ρ3(y3n), and calculate yn.

Example 4 We ask the same questions as in Example 3 for the difference equation
yn = 3yn−1 − 3yn−2 + 3yn−3, n ≥ 3, with the initial conditions y0 = y1 = y2 = 1.

To answer these questions we consider the generating function f(x) =
∑∞

k=0 ykx
k of

the sequence and try to derive the solution in a “closed form.” We explore the properties
of the generating function to study arithmetic properties. The generating function f(x)
can be written as a rational function P (x)/Q(x). The denominator Q(x) represents the
difference equation while the numerator P (x) carries information on the initial values.
For a recurrent sequence defined by identity (1) the usual initial choice for Q(x) is the
characteristic polynomial 1 − c1x − c2x

2 − . . . − cdx
d. We note that if the roots of Q(x)

are integers then this approach might offer a complete direct treatment of the questions.
The generating function method provides the following answers to the examples.

Example 1: We use the partial fraction expansion of the generating function

f(x) =
x

(1− x)(1 + x)2
=

1/4

1− x
+

1/4

1 + x
− 1/2

(1 + x)2
.
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This implies yn = 1/4 + 1/4 · (−1)n + 1/2 · (−1)n−1(n + 1) = 1/4{(−1)n−1(2n + 1) + 1
}
.

We get y720 = −360, ρ3(y720) = 2, and in general,

ρp(yn) =

{
ρp(n/2), if n is even,
ρp((n + 1)/2), if n is odd.

This also follows by observing that the sequence runs through the positive and negative
integers in a simple pattern: 0, 1,−1, 2,−2, 3,−3, . . . .

Example 2: The generating function is f(x) = x
1−x−x2 and yn is the familiar Fibonacci

number, Fn. For any prime p 6= 2 and 5, we have (cf. [4] and [7])

ρp(yn) =
{

ρp(n) + ρp(Fn(p)), if n ≡ 0 (mod n(p)),
0, if n 6≡ 0 (mod n(p))

where n(p) is the rank of apparition or Fibonacci entry-point of p, i.e., the smallest positive
index n such that p divides Fn. For example, n(3) = 4 and ρ3(F4) = 1. Also note that
ρ5(Fn) = ρ5(n).

Example 3: The generating function is f(x) = (1−x)2

1−3x+3x2 and yn = 2 · 3n
2
−1 cos nπ

6
for

n ≥ 1 ([13]); therefore, y6n+3 = 0 and ρ3(yn) = bn−1
2
c, n 6≡ 3 mod 6.

Example 4: In this case f(x) = (1−x)2

1−3x+3x2−3x3 which implies that ρ3(yn) ≥ bn+1
3
c − 1,

and equality holds if and only if n + 1 is a multiple of 3 (by Theorem C in Section 5). It
follows that ρ3(y3n) ≥ n. In Section 5 we prove that equality holds here.

We will see that the sequences in the last three examples are related to the sum
yn(p, a).

3. CONGRUENCES AND PERIODICITY VIA GENERATING FUNC-
TIONS

The generating function carries lots of information on the sequence. However, it is far from
being obvious how to recover information relevant to arithmetic properties. Sometimes
the fine details of the integer sequence defined by formula (1) are obscured by the usual
rational function representation. There are relatively prime polynomials P (x) and Q(x)
with integer coefficients and deg Q(x) ≤ d such that f(x) = P (x)/Q(x). In fact, there
are infinitely many pairs (P (x), Q(x)) of numerators and denominators yielding f(x) =
P (x)/Q(x). It might be beneficial to choose the pair with the minimal polynomial, Q(x),
i.e., the uniquely determined polynomial of least degree. The advantage is that we have
to deal with the least number of roots after the rational fraction expansion. The potential
drawback of this approach is that the arithmetic properties might get deemphasized. From
a historical point of view, the various arithmetic properties of factorials and binomial
coefficients were studied by Legendre, Kummer, Lucas, and Anton. They found some
remarkable results concerning divisibility and congruential properties. New and related
techniques were developed to study other combinatorial quantities and to include periodic
properties. A generating function based method was popularized by Fine’s proof of Lucas’
Theorem on expanding the congruence

(
n
k

)
(mod p) in 1947. A similar application (cf.

[13]) shows that the Stirling number of the second kind, S(n, k), satisfies the congruence

S(n, k) ≡
(
dk/2e+n−k−1

n−k

)
mod 2. The modulo p periodicity of a sequence is also often

studied via its generating function. The sequence {yn}n≥0 is said to be periodic modulo
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M with period π if there exists an n0 ≥ 0 such that yn+π ≡ yn (mod M) for n ≥ n0.
The smallest such π is called the minimum period modulo M . If n0 = 0 then the sequence
is said to be purely periodic. The following theorem describes an important situation.

Theorem A Let f(x) = 1/Q(x) be the generating function of the integer sequence yn

such that Q(x) is a polynomial with integer coefficients. The minimum period modulo M
is the smallest integer π such that (1 − xπ)f(x) is a polynomial modulo M . If Q(0) = 1
and its leading coefficient is relatively prime to M > 1 then the sequence yn is purely
periodic modulo M .

For example, the sequence {
(

n
k

)
}n≥k is purely periodic for its generating function is

1/(1 − x)k+1. The sequence in Example 2 and {yn+1}n≥0 of Example 1 are also purely
periodic modulo any integer. Zabek [14] obtained the minimum period of the binomial
coefficients modulo pN in 1956, while Trench [12] extended this result for integer-valued
polynomials in 1960. In 1987 Nijenhuis and Wilf [10] determined the modulo p periodicity
of S(n, k) in n, while Kwong [5] determined the period modulo pN , N > 1, in 1989. Note
that if P (x) and Q(x) are relatively prime modulo p then the modulo pN period length of
the sequence yn depends on the denominator Q(x) only ([4]).

4. DIVISIBILITY VIA GENERATING FUNCTIONS

Let the integral sequence yn satisfy the recurrence (1) of order d. There are no general
methods known to calculate ρp(yn) but ad hoc calculations based on the closed form of
the sequence (cf. Examples 1 and 3) or modulo pN periodicity. For example, the periodic
property obtained by Kwong [5] lead to the divisibility properties described in

Theorem B [6, Theorem 2] Let c be an odd and n be a non-negative integer. If
1 ≤ k ≤ n + 2 then ρ2(k! S(c · 2n, k)) = k − 1, i.e., ρ2(S(c · 2n, k)) =d2(k)− 1.

We discuss three different sets of conditions on the divisibility of the coefficients and
initial values that help in the systematic study of ρp(yn).

(a) Assume that the initial value condition ρp(cd) = 0 holds. A basis of sequences is
defined as a collection of d sequences for which any sequence can be described uniquely
as a linear combination of the basis sequences. For any prime p such that ρp(cd) = 0,
there exist infinitely many integers k in a full arithmetic sequence with the property that
a block of d consecutive terms of each basis sequence, starting with the kth term, has
d− 1 of these terms divisible by p while the remaining term is congruent to 1 mod p ([9]).

(b) Assume that for some nonnegative integer m and positive integer r, the initial values
and coefficients satisfy the conditions

min
1≤i≤d−1

ρp(yi) ≥ ρp(yd) = m ≥ 0

and
min

1≤i≤d−1
ρp(ci) ≥ ρp(cd) = r ≥ 1,

respectively. The lower bound ρp(yn) ≥ (bn
d
c − 1)r + m is obtained in [2], and the cases

where the bound is tight are also characterized. (Theorem C is a special case of this with
yn = yn(p, a).)
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(c) If the initial values and coefficients satisfy the conditions

ρp(yi) = i, 1 ≤ i ≤ d,

and
ρp(ci) ≥ i + 1, 1 ≤ i ≤ d− 1, and ρp(cd) = d,

respectively, then ρp(yn) = n for n ≥ 1. The proof follows by induction on n. We have
not found any previous reference to this result. Case (c) is illustrated on the sum yn(p, a)
in the Theorem provided p ≥ 3 and ρp(a + 1) = 1.

What is remarkable about these relations is that there is no need for calculating the
coefficients cis and initial values yis explicitly but a proof of their divisibility properties.
Conditions (b) and (c) imply that ρp(yn) increases as n →∞ while condition (a) shows
that this is not always the case.

5. RESULTS: DIVISIBILITY PROPERTIES OF yn(p, a)

The divisibility properties of yn(p, a) eventually depend on the divisibility by p of a + 1
for any prime p ≥ 3 and a− 1 for p = 2. The author recently proved

Theorem C [8] Let p be an arbitrary prime and a be an integer such that ρp(a+1) = 1

if p ≥ 3, or a ≡ 3 (mod 4) if p = 2. Then ρp

(∑bn/pc
k=0

(
n
k p

)
ak
)
≥
⌊

n+1
p

⌋
− 1, and equality

holds if and only if p divides n + 1.
If p ≥ 3 and ρp(a + 1) ≥ 2 then for n ≥ 1: ρp

(∑bn/pc
k=0

(
n
k p

)
ak
)
≥
⌊

n
p−1

⌋
− 1, and equality

holds if and only if p− 1 divides n.
If p = 2 and ρ2(a− 1) = 2 then ρ2

(∑bn/pc
k=0

(
n
k p

)
ak
)

= n− 1 for n ≡ 1 or 2 mod 3, and
it is at least as large as n if n is a multiple of 3.
If p = 2 and ρ2(a− 1) ≥ 3 then ρ2

(∑bn/pc
k=0

(
n
k p

)
ak
)

= n− 1.

If a 6≡ −1 mod p then
∑bn/pc

k=0

(
n
k p

)
ak ≡ (a + 1)bn/pc mod p, hence ρp

(∑bn/pc
k=0

(
n
k p

)
ak
)

= 0.

Remark The last case easily follows from Lucas’ Theorem. Actually, if p|n then the

congruence
(

n
k p

)
≡
(

n/p
k

)
mod p can be improved to

(
n
k p

)
≡
(

n/p
k

)
mod p3 for p ≥ 5 (cf.

[3]). Therefore, if a 6≡ −1 mod p and n is a multiple of p then the stronger statement
yn(p, a) ≡ (a + 1)n/p mod p3 holds true for p ≥ 5. The divisibility structures described in
Theorem C are extended in the main result of this paper.

Theorem Let p be an odd prime and a be an integer such that ρp(a + 1) = 1. Then
ρp(ynp(p, a)) = n for n ≥ 0. In particular,

y(n+p)p ≡ (a + 1)pynp (mod pn+p+1). (2)

For any prime p ≥ 3 and a = −1 we have

y(n+p)(p−1) ≡ −ppyn(p−1) (mod pn+p), n ≥ 1. (3)

Some special cases with a = −1, 1, and 5 are of considerable interest. The case with
a = −1 has been studied in [2], and it is related to the divisibility properties of S(n, k). If
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a = −1 and p = 3 as in Example 3, then the study of yn(3,−1) can be carried out by using
the trigonometric formula yn(3,−1) = 2 · 3n

2
−1 cos nπ

6
, n ≥ 1 [13, Example 4, in Section

2.4]. For a = 1 direct summation yields yn(2, 1) = 2n−1 while for any odd prime p we get
yn(p, 1) ≡ 2bn/pc modp. The Fibonacci numbers Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1,

are related to yn = yn(2, 5) by the celebrated identity 2n−1Fn =
∑∞

k=0

(
n

2k+1

)
5k. It follows

that Fn = 21−n5−1(yn+1 − yn). (For references on ρp(Fn) see [4] or [7].) Theorem C also
implies that ρ2(yn(2, 3)) = n−1

2
for n odd, and it is at least n

2
for n even. This identity

appeared in [1].

Proof of the Theorem From now on p denotes an odd prime. We obtain a rational
generating function for yk(p, a) with a numerator and denominator of the same degree

∞∑
k=1

yk(p, a)xk =
x{(1− x)p−1 + axp−1}

(1− x)p − axp
=

Na(x)

Da(x)
. (4)

Note that Theorem C can be proven by using this rational generating function. In fact,

∞∑
k=1

yk(3, 2)xk =
x− 2x2 + 3x3

1− 3x + 3x2 − 3x3
(5)

yields the third order difference equation of Example 4: yn+3 = 3yn+2−3yn+1+3yn, n ≥ 0.
To prove the Theorem we form alternative recurrence relations for the original sequence
yn with properties that are more helpful in analyzing its p-sected subsequence ynp. For
instance, we can switch from the original difference equation to yn+4 = 2yn+3 + 3yn.
This alternative difference equation can be obtained by substitutions or by realizing that
D2(x) = 1−3x+3x2−3x3 multiplied by 1+x becomes 1−2x−3x4. The newly obtained
difference equation of order 4 suggests an order 12 linear recurrence relation involving
only terms with indices whose differences are multiples of 3. Unfortunately, this difference
equation

yn+12 = 8yn+9 + 36yn+6 + 54yn+3 + 27yn

is of little help in proving the particular divisibility properties as its coefficients did not
follow any nice divisibility patterns.

However, there is a general method providing us with a recurrence relation of order
p2 (for ρp(a + 1) = 1 and p ≥ 3) such that all index differences are divisible by p, and
the coefficients exhibit some divisibility patterns. We follow Gessel’s idea [2] and multiply
both Na(x) and Da(x) of (4) by Da(ωx)Da(ω

2x) . . . Da(ω
p−1x), where ω is a primitive pth

root of unity. Since D∗
a(x) = Da(x)Da(ωx) . . . Da(ω

p−1x) is invariant under substituting
ωx for x, it must be a polynomial in xp. This allows us to p-sect the coefficients of the
sequence yk by multiplying its generating function by D∗

a(x). We are able to write

∞∑
k=1

yk(p, a)xk =
N∗

a (x)

D∗
a(x)

, (6)

where

N∗
a (x) = x{(1− x)p−1 + axp−1}

p−1∏
j=1

((1− ωjx)p − a(ωjx)p) = b1x + b2x
2 + . . . ,
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with b1 = 1 and

D∗
a(x) =

p−1∏
j=0

((1− ωjx)p − a(ωjx)p) = 1 + cpx
p + c2px

2p + . . . (7)

are polynomials of degree p2 if ρp(a + 1) = 1 and p(p − 1) if a = −1, respectively. For
example, we find an equivalent form of identity (5)

∞∑
k=1

yk(3, 2)xk =
x + x2 + 3x3 + 12x5 + 18x6 − 9x7 + 9x8 + 27x9

1− 9x3 − 27x6 − 27x9
. (8)

If ρp(a + 1) = 1 then by identities (6) and (7), and after determining yp, y2p, . . . yp2 , we
can derive the recurrence relation (n ≥ 1)

y(n+p)p = −cpy(n+p−1)p − c2py(n+p−2)p − . . .− cp2ynp, (9)

and that’s all we need to evaluate ykp, for k > p. For a = −1 and n ≥ 1 we use

y(n+p)(p−1) = −cpy(n+p−1)(p−1)−1 − c2py(n+p−2)(p−1)−2 − . . .− c(p−1)pyn(p−1) (10)

to evaluate yk(p−1), for k > p. The degree of the denominator in identity (6) is the order
of the difference equations in (9) and (10). However, the order can be reduced by a factor
of p as we do p-section. To apply case (c) of Section 4 we need

Lemma 1 If ρp(a + 1) = 1 then ρp(ckp) ≥ k + 1 for k = 1, 2, . . . , p− 1 and ρp(cp2) = p.
If a = −1 then ρp(ckp) ≥ k + 1 for k = 1, 2, . . . , p− 2 and ρp(c(p−1)p) = p.

This lemma is crucial in proving the Theorem both for small and large values of n. In
the former case, for the initial values k = 1, 2, . . . , p, we shall also need

Lemma 2 For ρp(a + 1) = 1 we have ρp(bkp) = k for k = 1, 2, . . . , p.

For example, multiplying both sides of (8) by D∗
2(x) and equating the coefficients yields

ρ3(b3k) = k, 1 ≤ k ≤ 3, by Lemma 2, and therefore, ρ3(y3k) = k, 1 ≤ k ≤ 3.

Proof of Lemma 1 Binomial expansion yields Da(x) = (
∑p−1

j=0

(
p
j

)
(−1)jxj) − (a +

1)xp. We expand the denominator D∗
a(x) symbolically by counting the ways its factors

contribute to xkp, k = 0, 1, . . . , p. We observed that D∗
a(x) is actually a polynomial in xp;

therefore, we need only these terms. Any combination of p factors contributing xkp to the
expansion can be characterized by the number, ij, of polynomial factors in (7) in which
the term with xj is selected. For ρp(a + 1) = 1 we get

∑p
j=0 jij = kp and

∑p
j=0 ij = p

since each of the p factors has exactly one contributing term. By binomial expansion
and ignoring the factors of ω, the contribution of any term with the characterization
(i0, i1, . . . , ip) is a multiple of(

p

0

)i0(p

1

)i1

· · ·
(

p

p− 1

)ip−1

(−a− 1)ip . (11)

We determine the exponent in the power of p which divides this quantity in terms of
(i0, i1, . . . , ip). The exponent is at least p − i0 ≥ k and equality holds if and only if
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(i0, i1, . . . ip) = (p− k, 0, 0, . . . , 0, k). In this latter case there are
(

p
k

)
ways of choosing the

k factors with xp. It follows that ρp(ckp) ≥ k + 1 for 1 ≤ k ≤ p − 1 and ρp(cp2) = p. In
fact, cp2 = −(a + 1)p.

If a = −1 then none of the p factors in (7) have a term involving xp; therefore, we can
remove the last factor of (11). In this case p − i0 ≥ k + 1 holds yielding ρp(ckp) ≥ k + 1
for 1 ≤ k ≤ p− 2, while c(p−1)p = pp. Note that ckp = 0 is also true for k odd ([2]).

Proof of Lemma 2 We leave out the details but note that although N∗
a (x) looks less

structured than D∗
a(x) it is easier to describe the relevant coefficients bkp, 1 ≤ k ≤ p.

Actually, we are able to determine bkp (mod pk+1) as calculations similar to those in the

proof of Lemma 1 lead to bkp ≡ (−1)k−1
(

p−1
k−1

)
((a + 1)k +

(
p
k

)p−1
(−1)k) (mod pk+1) for

k ≤ p− 1 and bp2 = (a + 1)p. The condition ρp(a + 1) = 1 guarantees that ρp(bkp) = k.

The proof of the Theorem is now complete by the p-sections y′n = ynp and c′i = cip, and
transforming identity (9) to identity (1) with d = p. In fact, Lemmas 1 and 2 guarantee
the conditions in part (c) of Section 4. By the lemmas, identities (9) and (10) also imply
(2) and (3).

Note that the p-secting steps of the proof can be easily extended to polynomial denom-
inators different from D∗

a(x) with the original orders preserved.

References

[1] D. M. Bloom, Solution to Problem 428, College Math. Journal 22(1991), 257–259.

[2] I. M. Gessel and T. Lengyel, On the order of Stirling numbers and alternating binomial coefficient
sums, Fibonacci Quarterly 39(2001), 444–454.

[3] A. Granville, Binomial coefficients modulo prime powers, in preparation at http:

//www.math.uga.edu:80/˜andrew in Binomial/index.html or Postscript/binomial.ps

[4] D. E. Knuth, The Art of Computer Programming, vol. 2., Seminumerical Algorithms, Second
Edition, Addison-Wesley, Reading, 1981.

[5] Y. H. Kwong, Minimum periods of S(n, k) modulo M , Fibonacci Quarterly 27(1989), 217–221.

[6] T. Lengyel, On the divisibility by 2 of the Stirling numbers of the second kind, Fibonacci Quarterly
32(1994), 194–201.

[7] T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quarterly 33(1995), 234–
239.

[8] T. Lengyel, Divisibility properties by recurrence relations, in: Advances in Difference Equations,
Proceedings of the Second International Conference on Difference Equations and Its Applications,
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