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The head to tail ratio converges to 1 with probability one when a fair coin is flipped. We

show that the limit probability of reaching the ratio q-I-% is ﬁ, as ¢ —» 0o and ¢ and m

are co-primes.

1. INTRODUCTION

We flip a balanced coin. Let X and Y denote the number of heads and tails, respectively.
It is well known from the theory of random walks that the probability of ever visiting the line
Y = X —m is 1 for any integer m. For instance, if the line is reached when Y = n then
X =n+m and the probability of this happeningis p, = P(Y = X —m) = (2n:m) /22 tm,
It follows that 1 —1 / (1 + >0 pn) is the probability that the line Y = X — m is ever
reached [3]. By binomial identities (cf. identities (5.72) and (5.78) in [4], p. 203), we obtain
for |z| < 1/2 that
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If 2 = 1/2, then the sum is divergent, therefore the line will be reached with probability 1.
We might as well be interested in calculating the probability of reaching a given ratio instead
of a difference. By the theory of recurrent events [3]. the probability of reaching the ratio
one (or equivalently. a difference of m = 0) is 1, though the expected number of flips needed
is infinite. In this paper we discuss the extreme value of the probability of reaching a given
head to tail ratio which is different from 1.

We note that the case of an unbalanced coin has been discussed in the literature ([3],
Exercise 4, p. 339). In general, let h and ¢ denote the probability of getting a head and a
tail, respectively, where h 4+t = 1. The event that the accumulated number of heads equals

A times the accumulated number of tails is persistent, i.e., it has probability one, if and only

if the head/tail probability ratio, h/t, is equal to A. Other ratios are usually not discussed.
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In this paper we consider the head to tail ratio X/Y for a balanced coin. We like to know
how large the probability of ever reaching a given head to tail ratio, ¢/p, is where p and
q are co-primes, i.e. the ratio ¢/p is given in lowest terms. We assume that ¢ < p, since
for a balanced coin, the ratios ¢/p and p/q can be reached with the same probability. We set
T=p+q.

Numerical evidence suggests that the second largest probability is around 2/3 and it does
not exceed 2/3. Hence there is a gap between 1 and the second largest probability of reaching
a given ratio ¢/p. We prove that for every positive € and integer m, this probability is less

4 _ _q

than 2—{—% +e < % + ¢ for ratios of form > = 7im with large values of ¢, where ¢ and

m are co-primes. Actually, the limit probability is ﬁ Let u(p,q) = >, (22)2_“” be.

The probability of ever reaching the ratio ¢/p is w(p,q) =1— m The infinite series

Z;CZI (;:)2_”’ diverges if p = ¢, and it converges otherwise.
Note, that instead of the head to tail ratio we might consider the head to total ratio. The

head to tail ratio 1 corresponds to the head to total ratio 1/2.
2. THE RESULT

Let gecd(g,m) denote the greatest common divisor of the positive integers g and m. We
prove
THEOREM. lim . w(q+1,q) = 2/3, and in general. for every fit m > 1,

2
24 m

lim  w(g+m,q) =
gcdiq,m):l

Theorem 1 shows the somewhat surprising fact that u(p, ¢) is not a continuous function of
the ratio ¢/p. To illustrate this, we compare two ratios that are close. Say, the first pair is
(g+1,q),i.e., m =1, while the other is (¢+2, ¢), with m = 2. By selecting a sufficiently large
odd ¢. the two ratios can be arbitrarily close, though the probabilities of reaching them stay

apart since w(q+ 1,q) ~ 2/3, while w(q+2,q) ~1/2.

In this paper we use the following notations and assumptions.

Let m be a fixed positive integer. Assume that p = q¢+ m, i.e., r = 2¢ + m, such that
2
m
2 < 1.
From now on, ¢i(p,m,n),ca(p,m,n), and cz(p,m,n) denote bounded functions of the vari-
ables p,m., and n. Similarly, c4(p, m.N), c5(p,m,N). cg(p.m,N), cr(p,m,N). csg(p.m,N),

co(p,m,N), and c19(p, m) are bounded functions of the variables indicated in parentheses.
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rn) 9—rn.

Lemma 1 utilizes the Stirling formula in order to asymptotically evaluate g(p, q,n) = (qn

It will be applied to the sum w(p,q) =Y.~ 9(p,q.n).

LEMMA 1. In addition to the previous conditions on p,q, and m, let ¢ > m be. Then

L p \p/p—q\a\" D /1 1
glp,q,n) = ( — ) Iy a— —(1 + ci(p.m,n —)
( (2p—q) ( q ) V 2¢(p—q) V nr 1 )pn

We omit the proof of Lemma 1 but note that it can be proved similarly to the asymptotical

formula

(a+b)n (a 4 b)rlatb+1/2
~ aan—{—l/ben—I—l/Z \/ﬁ

for positive integers a and b (cf. [1], Exercise 2, p. 292).

an,

. . . 2
By introducing the notation %% = % — €, we get € = % and 2pe? = % < 1. Lemma 1
yields
9(p.q.n) =

[2 1 (1 -2+ ca(p,m, n)et)™ 1 | 1
| ;ﬁ( € —I—(f/(g/m,n)F) (1—|—(:1(pﬂm,n)p—n)(1—l-262—I—C3(p,m,n)e4). (1)

We set Sny(p,q) = Zﬁle ((T;Z) 2% The Theorem will be proven in three steps. We shall
need Lemmas 2 and 3 to approximate the sum u(p,q). We select a large N in identity (2)
to get a close approximation to u(p,q) = >, ~; 9(p.g,n) by the finite sum Sy(p,q). Next,
we need a sufficiently large p in equation (3) ‘r:) approximate Sy(p,q) by another sum which
is easier to calculate. Formula (4) suggests that we choose large p and N in order to have
a meaningful approximation when using FEuler’s formula. The proof follows as we combine
identities (2) and (5).

By Lemma 1 we obtain

LEMMA 2. Letp =q+m and r = 2q + m be where m > 0 is a fixed integer such that
7n2
oy < 1. Then

= /rn\ 1 p\1/2 me\N
u(p,q) = < ) — = Sn(p,q) + ca(p,m, N (—) (1——) , 2
=3 (o) o )+ estpom. N) (£ > (2

and




T. Lengyel

PROOF OF LEMMA 2.

We get an upper bound on ZZO:NH g(p,q.n) by using the identity > .= z" = A
with any z exceeding (1 — 7;—;) It follows from identity (1) that w(p.q) — Sn(p,q) =

N
Z;C:N_H 9(p,q.n) = cG(p,m,N)W (1 — 'gp) frf; Similarly, identity (1) gives an upper
bound on the error term’s contribution to Zi\;l g(p,q,n). The error is of magnitude In N/p.

We shall need

LEMMA 3. Under the conditions of Lemma 2,

N z)n,
,./2 1
Z_ = 7T+C7(p7m>N)(_+ 2) (4)
— VP m VP N
Therefore,
il 2 In N 1 [py 2
N(p.q) = Z (qn) 5w = + es(p,m, N) p + . (p,m N)<7}7 + %) - (5)

n=1

REMARK. Lemma 3 shows that Sy(p, q) can get arbitrarily close to , for large p and N.
In fact, we select a sequence N = N(p) so that p/N(p) — 0 and In N(p /p — 0, as p — oo.

1 . e 2 L. . Cr . —
By Lemma 2, it follows that Y7, (q”) g converges to =, as ¢ — oo and ged(q,m) = 1.

PROOF OF LEMMA 3.

We shall need an application of Euler’s summation formula ([5], p. 108 or [2]) to derive

identity (4). Let f(k) = \/_ (1_\7/21 ) be. Euler’s method yields formula (6) for the difference

between jln flx)dx and Y7, _, f(k) if f(z) is differentiable, i.e.,

> 1= [ 1wy 50 - 70) + [ B (6)

1<k<n

where Bi(y) =y —1/2 and {y} =y — |y].
We apply this formula to function f(k). Clearly, f(n) converges to 0 at a rate faster than
—= asn —oc, and f(1)< 2=, Weset 1=(1— 72"—;) Here s > 1, since p is large enough

vn NG :
1— m?
to make % < 1. We note that f'(y) = %%(—lns - %) Observe that Ins ~ %

as p — o0.
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First we asymptotically evaluate the first term on the right side in formula (6). A well

known integral equation for the gamma function [5] says that for all a > —1

/ re~ " vdy = — / e it = —, (a+1). (7)
Jo T Jo @

€r

By setting z =Ins and a = —1/2, it follows that

00 | o ooie—ylns l _L ns—1/2 -
/0 f(y)dy—!(J NN dy—\/ﬁ(l ) (8)

Therefore, if p is sufficiently large then Ins ~ '5—; and the above integral is asymptotically

equal to % Hence the term ]1 y)dy contributes ‘/37_” + cg(p,m, n)% + co(p, m, n)\/g

60 D i <pen f(K) in formula (6).
For the last term of identity (6) we obtain

5 / o ldy < ) 9 4 g,
/ () F(w) u‘ Wl < | e (2 gy

m2\? o m>
S A Gt ) MY R U Gk 7 M PR

> Y Y.
Jo VP VY 2p Ji VP VY 2y

Similarly to equation (8), identity (7) yields

<1 (1—2—;)Jm2 1 m?
—dy = c1o(p, m)—

h i Ty

For the second term, we get

(10)

>~ 1 (1- % / 1y 2
L e VS E) RS
These inequalities provide us with an upper bound on fln Bi({y}) [ (y)dy.
From here it follows that for fixed m. 3, ., f(k) = ‘/7727 + e7(p,m,n) (ﬁ + \/g) In

fact, we get lim, . u(q+m.q) = % and for the probability that the ratio ¢/p will ever be

=1-—1_=_-2_< gﬂ where the limit

reached, we conclude that limg_, 1 — TF2/m = 5%m

1
1+u(g+m,q)
is taken over the set of (g, m)-pairs that are co-primes.
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