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The head to tail ratio converges to 1 with probability one when a fair coin is 
ipped. We

show that the limit probability of reaching the ratio q
q+m is 2

2+m ; as q !1 and q and m

are co-primes.

1. Introduction

We 
ip a balanced coin. Let X and Y denote the number of heads and tails, respectively.

It is well known from the theory of random walks that the probability of ever visiting the line

Y = X �m is 1 for any integer m. For instance, if the line is reached when Y = n then

X = n+m and the probability of this happening is pn = P (Y = X �m) =
�
2n+m
n

�
=22n+m:

It follows that 1 � 1
��
1 +

P1
n=1 pn

�
is the probability that the line Y = X � m is ever

reached [3]. By binomial identities (cf. identities (5.72) and (5.78) in [4], p. 203), we obtain

for jxj < 1=2 that

1X
n=0

�
2n+m

n

�
x2n+m =

�
1�p1� 4x2

2x

�m.p
1� 4x2:

If x = 1=2, then the sum is divergent, therefore the line will be reached with probability 1.

We might as well be interested in calculating the probability of reaching a given ratio instead

of a di�erence. By the theory of recurrent events [3], the probability of reaching the ratio

one (or equivalently, a di�erence of m = 0) is 1, though the expected number of 
ips needed

is in�nite. In this paper we discuss the extreme value of the probability of reaching a given

head to tail ratio which is di�erent from 1.

We note that the case of an unbalanced coin has been discussed in the literature ([3],

Exercise 4, p. 339). In general, let h and t denote the probability of getting a head and a

tail, respectively, where h + t = 1: The event that the accumulated number of heads equals

� times the accumulated number of tails is persistent, i.e., it has probability one, if and only

if the head/tail probability ratio, h=t, is equal to �: Other ratios are usually not discussed.

�
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In this paper we consider the head to tail ratio X=Y for a balanced coin. We like to know

how large the probability of ever reaching a given head to tail ratio, q=p; is where p and

q are co-primes, i.e. the ratio q=p is given in lowest terms. We assume that q < p; since

for a balanced coin, the ratios q=p and p=q can be reached with the same probability. We set

r = p + q:

Numerical evidence suggests that the second largest probability is around 2=3 and it does

not exceed 2=3: Hence there is a gap between 1 and the second largest probability of reaching

a given ratio q=p: We prove that for every positive � and integer m, this probability is less

than 2
2+m + � � 2

3 + � for ratios of form q
p = q

q+m with large values of q, where q and

m are co-primes. Actually, the limit probability is 2
2+m : Let u(p; q) =

P1
n=1

�
rn
qn

�
2�rn be.

The probability of ever reaching the ratio q=p is w(p; q) = 1� 1
1+u(p;q) : The in�nite seriesP1

n=1

�
rn
qn

�
2�rn diverges if p = q; and it converges otherwise.

Note, that instead of the head to tail ratio we might consider the head to total ratio. The

head to tail ratio 1 corresponds to the head to total ratio 1/2.

2. The result

Let gcd(q;m) denote the greatest common divisor of the positive integers q and m. We

prove

Theorem. limq!1w(q + 1; q) = 2=3; and in general, for every �x m � 1;

lim
q!1

gcd(q;m)=1

w(q +m; q) =
2

2 +m
:

Theorem 1 shows the somewhat surprising fact that u(p; q) is not a continuous function of

the ratio q=p. To illustrate this, we compare two ratios that are close. Say, the �rst pair is

(q+1; q); i.e., m = 1; while the other is (q+2; q); with m = 2: By selecting a su�ciently large

odd q; the two ratios can be arbitrarily close, though the probabilities of reaching them stay

apart since w(q + 1; q) � 2=3; while w(q + 2; q) � 1=2:

In this paper we use the following notations and assumptions.

Let m be a �xed positive integer. Assume that p = q +m; i.e., r = 2q +m; such that
m2

2p < 1:

From now on, c1(p;m; n); c2(p;m; n); and c3(p;m; n) denote bounded functions of the vari-

ables p;m; and n: Similarly, c4(p;m;N); c5(p;m;N); c6(p;m;N); c7(p;m;N); c8(p;m;N);

c9(p;m;N); and c10(p;m) are bounded functions of the variables indicated in parentheses.
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Lemma 1 utilizes the Stirling formula in order to asymptotically evaluate g(p; q; n) =
�
rn
qn

�
2�rn.

It will be applied to the sum u(p; q) =
P1

n=1 g(p; q; n).

Lemma 1. In addition to the previous conditions on p; q; and m, let q > m be. Then

g(p; q; n) =
��1

2

p

p � q

�p�p� q

q

�q�nr p

2q(p� q)

r
1

n�

�
1 + c1(p;m; n)

1

pn

�
:

We omit the proof of Lemma 1 but note that it can be proved similarly to the asymptotical

formula �
(a+ b)n

an

�
� (a+ b)n(a+b)+1=2

aan+1=2bbn+1=2
1p
2�n

;

for positive integers a and b (cf. [1], Exercise 2, p. 292).

By introducing the notation 1
2
q
p = 1

2 � �; we get � = m
2p and 2p�2 = m2

2p < 1: Lemma 1

yields

g(p; q; n) =r
2

�

1p
p

�
1� 2�2 + c2(p;m; n)�4

�pn
p
n

�
1 + c1(p;m; n)

1

pn

��
1 + 2�2 + c3(p;m; n) �4

�
:

(1)

We set SN (p; q) =
PN

n=1

�
rn
qn

�
1
2rn : The Theorem will be proven in three steps. We shall

need Lemmas 2 and 3 to approximate the sum u(p; q): We select a large N in identity (2)

to get a close approximation to u(p; q) =
P

n�1 g(p; q; n) by the �nite sum SN (p; q). Next,

we need a su�ciently large p in equation (3) to approximate SN (p; q) by another sum which

is easier to calculate. Formula (4) suggests that we choose large p and N in order to have

a meaningful approximation when using Euler's formula. The proof follows as we combine

identities (2) and (5).

By Lemma 1 we obtain

Lemma 2. Let p = q +m and r = 2q +m be where m > 0 is a �xed integer such that

m2

2p < 1: Then

u(p; q) =
1X
n=1

�
rn

qn

�
1

2rn
= SN (p; q) + c4(p;m;N)

� p

N

�1=2�
1� m2

2p

�N
; (2)

and

SN (p; q) =

r
2

�

NX
n=1

1p
p

(1� m2

2p )
n

p
n

+ c5(p;m;N)
lnN

p
: (3)



4 T. Lengyel

Proof of Lemma 2.

We get an upper bound on
P1

n=N+1 g(p; q; n) by using the identity
P1

i=N zi = zN

1�z
with any z exceeding

�
1 � m2

2p

�
. It follows from identity (1) that u(p; q) � SN (p; q) =

P1
n=N+1 g(p; q; n) = c6(p;m;N) 1

(pN)1=2

�
1 � m2

2p

�N
2p
m2 : Similarly, identity (1) gives an upper

bound on the error term's contribution to
PN

n=1 g(p; q; n): The error is of magnitude lnN=p:

We shall need

Lemma 3. Under the conditions of Lemma 2,

NX
n=1

1p
p

(1� m2

2p )
n

p
n

=

p
2�

m
+ c7(p;m;N)

� 1p
p
+

r
p

N

�
: (4)

Therefore,

SN (p; q) =
NX
n=1

�
rn

qn

�
1

2rn
=

2

m
+ c5(p;m;N)

lnN

p
+ c7(p;m;N)

� 1p
p
+

r
p

N

�r 2

�
: (5)

Remark. Lemma 3 shows that SN (p; q) can get arbitrarily close to
2
m ; for large p and N:

In fact, we select a sequenceN = N(p) so that p=N(p) ! 0 and lnN(p)=p ! 0; as p!1:

By Lemma 2, it follows that
P1

n=1

�
rn
qn

�
1
2rn converges to 2

m ; as q !1 and gcd(q;m) = 1:

Proof of Lemma 3.

We shall need an application of Euler's summation formula ([5], p. 108 or [2]) to derive

identity (4). Let f(k) = 1p
p

�
1�m2

2p

�k
p
k

be. Euler's method yields formula (6) for the di�erence

between
R n
1
f(x)dx and

P
1�k<n f(k) if f(x) is di�erentiable, i.e.,

X
1�k<n

f(k) =

Z n

1

f(y)dy � 1

2

�
f(n)� f(1)

�
+

Z n

1

B1(fyg)f 0(y)dy; (6)

where B1(y) = y � 1=2 and fyg = y � byc:
We apply this formula to function f(k): Clearly, f(n) converges to 0 at a rate faster than

1p
n

as n!1; and f(1) < 1p
p : We set 1

s = (1� m2

2p ): Here s > 1; since p is large enough

to make m2

2p < 1: We note that f 0(y) = 1p
p

�
1�m2

2p

�y
p
y (� ln s � 1

2y ): Observe that ln s � m2

2p

as p!1:
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First we asymptotically evaluate the �rst term on the right side in formula (6). A well

known integral equation for the gamma function [5] says that for all � > �1
Z 1

0

xe�xvv�dv =
1

x�

Z 1

0

e�tt�dt =
1

x�
�(�+ 1): (7)

By setting x = ln s and � = �1=2, it follows that
Z 1

0

f(y)dy =

Z 1

0

1p
p

e�y ln sp
y

dy =
1p
p
(ln s)�1=2

p
�: (8)

Therefore, if p is su�ciently large then ln s � m2

2p and the above integral is asymptotically

equal to
p
2�
m : Hence the term

R n
1 f(y)dy contributes

p
2�
m + c8(p;m; n) 1p

p + c9(p;m; n)
p

p
n

to
P

1�k<n f(k) in formula (6).

For the last term of identity (6) we obtain

����
Z n

1

B1(fyg)f 0(y)dy
���� �

Z 1

1

jf 0(y)jdy �
Z 1

1

1p
p

�
1� m2

2p

�y
p
y

(2
m2

2p
+

1

2y
)dy

� 2

Z 1

0

1p
p

�
1� m2

2p

�y
p
y

m2

2p
dy +

Z 1

1

1p
p

�
1� m2

2p

�y
p
y

1

2y
dy:

(9)

Similarly to equation (8), identity (7) yields

Z 1

0

1p
p

�
1� m2

2p

�y
p
y

m2

p
dy = c10(p;m)

1

m

m2

p
: (10)

For the second term, we get

Z 1

1

1p
p

�
1� m2

2p

�y
y3=2

dy � 1p
p

Z 1

1

1

y3=2
dy =

2p
p
:

These inequalities provide us with an upper bound on
R n
1 B1(fyg)f 0(y)dy:

From here it follows that for �xed m,
P

1�k<n f(k) =
p
2�
m + c7(p;m; n)

�
1p
p +

p
p
n

�
: In

fact, we get limq!1 u(q +m; q) = 2
m and for the probability that the ratio q=p will ever be

reached, we conclude that limq!1 1� 1
1+u(q+m;q) = 1 � 1

1+2=m = 2
2+m � 2

3 ; where the limit

is taken over the set of (q;m)-pairs that are co-primes.
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