ON THE PROBABILITY OF REACHING A GIVEN head TO TAIL RATIO

TAMÁs Lengyel*
Department of Mathematics
Occidental College
Los Angeles, CA 90041, USA

The head to tail ratio converges to 1 with probability one when a fair coin is flipped. We show that the limit probability of reaching the ratio $\frac{q}{q+m}$ is $\frac{2}{2+m}$, as $q \rightarrow \infty$ and q and m are co-primes.

1. Introduction

We flip a balanced coin. Let X and Y denote the number of heads and tails, respectively. It is well known from the theory of random walks that the probability of ever visiting the line $Y=X-m \quad$ is 1 for any integer m. For instance, if the line is reached when $Y=n$ then $X=n+m$ and the probability of this happening is $p_{n}=P(Y=X-m)=\binom{2 n+m}{n} / 2^{2 n+m}$. It follows that $1-1 /\left(1+\sum_{n=1}^{\infty} p_{n}\right)$ is the probability that the line $Y=X-m$ is ever reached [3]. By binomial identities (cf. identities (5.72) and (5.78) in [4], p. 203), we obtain for $|x|<1 / 2$ that

$$
\sum_{n=0}^{\infty}\binom{2 n+m}{n} x^{2 n+m}=\left(\frac{1-\sqrt{1-4 x^{2}}}{2 x}\right)^{m} / \sqrt{1-4 x^{2}} .
$$

If $x=1 / 2$, then the sum is divergent, therefore the line will be reached with probability 1 . We might as well be interested in calculating the probability of reaching a given ratio instead of a difference. By the theory of recurrent events [3], the probability of reaching the ratio one (or equivalently, a difference of $m=0$) is 1 , though the expected number of flips needed is infinite. In this paper we discuss the extreme value of the probability of reaching a given head to tail ratio which is different from 1.

We note that the case of an unbalanced coin has been discussed in the literature ([3], Exercise 4, p. 339). In general, let h and t denote the probability of getting a head and a tail, respectively, where $h+t=1$. The event that the accumulated number of heads equals λ times the accumulated number of tails is persistent, i.e., it has probability one, if and only if the head/tail probability ratio, h / t, is equal to λ. Other ratios are usually not discussed.

[^0]In this paper we consider the head to tail ratio X / Y for a balanced coin. We like to know how large the probability of ever reaching a given head to tail ratio, q / p, is where p and q are co-primes, i.e. the ratio q / p is given in lowest terms. We assume that $q<p$, since for a balanced coin, the ratios q / p and p / q can be reached with the same probability. We set $r=p+q$.

Numerical evidence suggests that the second largest probability is around $2 / 3$ and it does not exceed $2 / 3$. Hence there is a gap between 1 and the second largest probability of reaching a given ratio q / p. We prove that for every positive ϵ and integer m, this probability is less than $\frac{2}{2+m}+\epsilon \leq \frac{2}{3}+\epsilon$ for ratios of form $\frac{q}{p}=\frac{q}{q+m}$ with large values of q, where q and m are co-primes. Actually, the limit probability is $\frac{2}{2+m}$. Let $u(p, q)=\sum_{n=1}^{\infty}\binom{r n}{q n} 2^{-r n}$ be. The probability of ever reaching the ratio q / p is $w(p, q)=1-\frac{1}{1+u(p, q)}$. The infinite series $\sum_{n=1}^{\infty}\binom{r n}{q n} 2^{-r n}$ diverges if $p=q$, and it converges otherwise.

Note, that instead of the head to tail ratio we might consider the head to total ratio. The head to tail ratio 1 corresponds to the head to total ratio $1 / 2$.

2. The result

Let $\operatorname{gcd}(q, m)$ denote the greatest common divisor of the positive integers q and m. We prove

Theorem. $\lim _{q \rightarrow \infty} w(q+1, q)=2 / 3$, and in general, for every fix $m \geq 1$,

$$
\lim _{\substack{q \rightarrow \infty \\ \operatorname{gcd}(q, m)=1}} w(q+m, q)=\frac{2}{2+m}
$$

Theorem 1 shows the somewhat surprising fact that $u(p, q)$ is not a continuous function of the ratio q / p. To illustrate this, we compare two ratios that are close. Say, the first pair is $(q+1, q)$, i.e., $m=1$, while the other is $(q+2, q)$, with $m=2$. By selecting a sufficiently large odd q, the two ratios can be arbitrarily close, though the probabilities of reaching them stay apart since $w(q+1, q) \approx 2 / 3$, while $w(q+2, q) \approx 1 / 2$.

In this paper we use the following notations and assumptions.
Let m be a fixed positive integer. Assume that $p=q+m$, i.e., $r=2 q+m$, such that $\frac{m^{2}}{2 p}<1$.

From now on, $c_{1}(p, m, n), c_{2}(p, m, n)$, and $c_{3}(p, m, n)$ denote bounded functions of the variables p, m, and n. Similarly, $c_{4}(p, m, N), c_{5}(p, m, N), c_{6}(p, m, N), c_{7}(p, m, N), c_{8}(p, m, N)$, $c_{9}(p, m, N)$, and $c_{10}(p, m)$ are bounded functions of the variables indicated in parentheses.

Lemma 1 utilizes the Stirling formula in order to asymptotically evaluate $g(p, q, n)=\binom{r n}{q n} 2^{-r n}$. It will be applied to the sum $u(p, q)=\sum_{n=1}^{\infty} g(p, q, n)$.

Lemma 1. In addition to the previous conditions on p, q, and m, let $q>m$ be. Then

$$
g(p, q, n)=\left(\left(\frac{1}{2} \frac{p}{p-q}\right)^{p}\left(\frac{p-q}{q}\right)^{q}\right)^{n} \sqrt{\frac{p}{2 q(p-q)}} \sqrt{\frac{1}{n \pi}}\left(1+c_{1}(p, m, n) \frac{1}{p n}\right) .
$$

We omit the proof of Lemma 1 but note that it can be proved similarly to the asymptotical formula

$$
\binom{(a+b) n}{a n} \sim \frac{(a+b)^{n(a+b)+1 / 2}}{a^{a n+1 / 2} b^{b n+1 / 2}} \frac{1}{\sqrt{2 \pi n}}
$$

for positive integers a and b (cf. [1], Exercise 2, p. 292).
By introducing the notation $\frac{1}{2} \frac{q}{p}=\frac{1}{2}-\epsilon$, we get $\epsilon=\frac{m}{2 p}$ and $2 p \epsilon^{2}=\frac{m^{2}}{2 p}<1$. Lemma 1 yields

$$
\begin{align*}
& g(p, q, n)= \\
& \quad \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{p}} \frac{\left(1-2 \epsilon^{2}+c_{2}(p, m, n) \epsilon^{4}\right)^{p n}}{\sqrt{n}}\left(1+c_{1}(p, m, n) \frac{1}{p n}\right)\left(1+2 \epsilon^{2}+c_{3}(p, m, n) \epsilon^{4}\right) . \tag{1}
\end{align*}
$$

We set $S_{N}(p, q)=\sum_{n=1}^{N}\binom{r n}{q n} \frac{1}{2^{r n}}$. The Theorem will be proven in three steps. We shall need Lemmas 2 and 3 to approximate the sum $u(p, q)$. We select a large N in identity (2) to get a close approximation to $u(p, q)=\sum_{n \geq 1} g(p, q, n)$ by the finite $\operatorname{sum} S_{N}(p, q)$. Next, we need a sufficiently large p in equation (3) to approximate $S_{N}(p, q)$ by another sum which is easier to calculate. Formula (4) suggests that we choose large p and N in order to have a meaningful approximation when using Euler's formula. The proof follows as we combine identities (2) and (5).

By Lemma 1 we obtain
Lemma 2. Let $p=q+m$ and $r=2 q+m$ be where $m>0$ is a fixed integer such that $\frac{m^{2}}{2 p}<1$. Then

$$
\begin{equation*}
u(p, q)=\sum_{n=1}^{\infty}\binom{r n}{q n} \frac{1}{2^{r n}}=S_{N}(p, q)+c_{4}(p, m, N)\left(\frac{p}{N}\right)^{1 / 2}\left(1-\frac{m^{2}}{2 p}\right)^{N} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{N}(p, q)=\sqrt{\frac{2}{\pi}} \sum_{n=1}^{N} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{n}}{\sqrt{n}}+c_{5}(p, m, N) \frac{\ln N}{p} \tag{3}
\end{equation*}
$$

Proof of Lemma 2.
We get an upper bound on $\sum_{n=N+1}^{\infty} g(p, q, n)$ by using the identity $\sum_{i=N}^{\infty} z^{i}=\frac{z^{N}}{1-z}$ with any z exceeding $\left(1-\frac{m^{2}}{2 p}\right)$. It follows from identity (1) that $u(p, q)-S_{N}(p, q)=$ $\sum_{n=N+1}^{\infty} g(p, q, n)=c_{6}(p, m, N) \frac{1}{(p N)^{1 / 2}}\left(1-\frac{m^{2}}{2 p}\right)^{N} \frac{2 p}{m^{2}}$. Similarly, identity (1) gives an upper bound on the error term's contribution to $\sum_{n=1}^{N} g(p, q, n)$. The error is of magnitude $\ln N / p$.

We shall need
Lemma 3. Under the conditions of Lemma 2,

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{n}}{\sqrt{n}}=\frac{\sqrt{2 \pi}}{m}+c_{7}(p, m, N)\left(\frac{1}{\sqrt{p}}+\sqrt{\frac{p}{N}}\right) \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
S_{N}(p, q)=\sum_{n=1}^{N}\binom{r n}{q n} \frac{1}{2^{r n}}=\frac{2}{m}+c_{5}(p, m, N) \frac{\ln N}{p}+c_{7}(p, m, N)\left(\frac{1}{\sqrt{p}}+\sqrt{\frac{p}{N}}\right) \sqrt{\frac{2}{\pi}} \tag{5}
\end{equation*}
$$

Remark. Lemma 3 shows that $S_{N}(p, q)$ can get arbitrarily close to $\frac{2}{m}$, for large p and N. In fact, we select a sequence $N=N(p)$ so that $p / N(p) \rightarrow 0$ and $\ln N(p) / p \rightarrow 0$, as $p \rightarrow \infty$. By Lemma 2, it follows that $\sum_{n=1}^{\infty}\binom{r n}{q n} \frac{1}{2^{r n}}$ converges to $\frac{2}{m}$, as $q \rightarrow \infty$ and $\operatorname{gcd}(q, m)=1$.

Proof of Lemma 3.

We shall need an application of Euler's summation formula ([5], p. 108 or [2]) to derive identity (4). Let $f(k)=\frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{k}}{\sqrt{\bar{k}}}$ be. Euler's method yields formula (6) for the difference between $\int_{1}^{n} f(x) d x$ and $\sum_{1 \leq k<n} f(k)$ if $f(x)$ is differentiable, i.e.,

$$
\begin{equation*}
\sum_{1 \leq k<n} f(k)=\int_{1}^{n} f(y) d y-\frac{1}{2}(f(n)-f(1))+\int_{1}^{n} B_{1}(\{y\}) f^{\prime}(y) d y \tag{6}
\end{equation*}
$$

where $B_{1}(y)=y-1 / 2$ and $\{y\}=y-\lfloor y\rfloor$.
We apply this formula to function $f(k)$. Clearly, $f(n)$ converges to 0 at a rate faster than $\frac{1}{\sqrt{n}}$ as $n \rightarrow \infty$, and $f(1)<\frac{1}{\sqrt{p}}$. We set $\frac{1}{s}=\left(1-\frac{m^{2}}{2 p}\right)$. Here $s>1$, since p is large enough to make $\frac{m^{2}}{2 p}<1$. We note that $f^{\prime}(y)=\frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{y}}{\sqrt{y}}\left(-\ln s-\frac{1}{2 y}\right)$. Observe that $\ln s \sim \frac{m^{2}}{2 p}$ as $p \rightarrow \infty$.

First we asymptotically evaluate the first term on the right side in formula (6). A well known integral equation for the gamma function [5] says that for all $\alpha>-1$

$$
\begin{equation*}
\int_{0}^{\infty} x e^{-x v} v^{\alpha} d v=\frac{1}{x^{\alpha}} \int_{0}^{\infty} e^{-t} t^{\alpha} d t=\frac{1}{x^{\alpha}},(\alpha+1) \tag{7}
\end{equation*}
$$

By setting $x=\ln s$ and $\alpha=-1 / 2$, it follows that

$$
\begin{equation*}
\int_{0}^{\infty} f(y) d y=\int_{0}^{\infty} \frac{1}{\sqrt{p}} \frac{e^{-y \ln s}}{\sqrt{y}} d y=\frac{1}{\sqrt{p}}(\ln s)^{-1 / 2} \sqrt{\pi} . \tag{8}
\end{equation*}
$$

Therefore, if p is sufficiently large then $\ln s \sim \frac{m^{2}}{2 p}$ and the above integral is asymptotically equal to $\frac{\sqrt{2 \pi}}{m}$. Hence the term $\int_{1}^{n} f(y) d y$ contributes $\frac{\sqrt{2 \pi}}{m}+c_{8}(p, m, n) \frac{1}{\sqrt{p}}+c_{9}(p, m, n) \sqrt{\frac{p}{n}}$ to $\sum_{1 \leq k<n} f(k)$ in formula (6).

For the last term of identity (6) we obtain

$$
\begin{align*}
\left|\int_{1}^{n} B_{1}(\{y\}) f^{\prime}(y) d y\right| \leq & \int_{1}^{\infty}\left|f^{\prime}(y)\right| d y \leq \int_{1}^{\infty} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{y}}{\sqrt{y}}\left(2 \frac{m^{2}}{2 p}+\frac{1}{2 y}\right) d y \\
& \leq 2 \int_{0}^{\infty} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{y}}{\sqrt{y}} \frac{m^{2}}{2 p} d y+\int_{1}^{\infty} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{y}}{\sqrt{y}} \frac{1}{2 y} d y \tag{9}
\end{align*}
$$

Similarly to equation (8), identity (7) yields

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{y}}{\sqrt{y}} \frac{m^{2}}{p} d y=c_{10}(p, m) \frac{1}{m} \frac{m^{2}}{p} \tag{10}
\end{equation*}
$$

For the second term, we get

$$
\int_{1}^{\infty} \frac{1}{\sqrt{p}} \frac{\left(1-\frac{m^{2}}{2 p}\right)^{y}}{y^{3 / 2}} d y \leq \frac{1}{\sqrt{p}} \int_{1}^{\infty} \frac{1}{y^{3 / 2}} d y=\frac{2}{\sqrt{p}}
$$

These inequalities provide us with an upper bound on $\int_{1}^{n} B_{1}(\{y\}) f^{\prime}(y) d y$.
From here it follows that for fixed $m, \quad \sum_{1 \leq k<n} f(k)=\frac{\sqrt{2 \pi}}{m}+c_{7}(p, m, n)\left(\frac{1}{\sqrt{p}}+\sqrt{\frac{p}{n}}\right)$. In fact, we get $\lim _{q \rightarrow \infty} u(q+m, q)=\frac{2}{m}$ and for the probability that the ratio q / p will ever be reached, we conclude that $\lim _{q \rightarrow \infty} 1-\frac{1}{1+u(q+m, q)}=1-\frac{1}{1+2 / m}=\frac{2}{2+m} \leq \frac{2}{3}$, where the limit is taken over the set of (q, m)-pairs that are co-primes.

Acknowledgment

The problem discussed in this paper has been brought to the author's attention by Professor J. Shavlik of the University of Wisconsin-Madison.

References

[1] L. Comtet (1974), Advanced Combinatorics, D. Reidel, Dordrecht
[2] N. G. De Bruijn (1970), Asymptotic Methods in Analysis, North-Holland, Amsterdam, 3rd edition
[3] W. Feller (1968), An Introduction to Probability Theory and Its Applications, vol. I, Wiley, 3rd edition
[4] R. L. Graham, D. E. Knuth, and 0. Patashnik (1988), Concrete Mathematics, AddisonWesley, Reading, MA
[5] D. E. Knuth (1973), The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, MA, 2nd edition

[^0]: * Present address: T. Lengyel, Dept. Math., Occidental College, 1600 Campus Road, Los Angeles, CA 90041, USA

