
INTERMEDIATE AND LIMITING BEHAVIOR OF POWERS
OF SOME CIRCULANT MATRICES

GREGORY P. TOLLISEN and TAMÁS LENGYEL

Abstract. Let A be an arbitrary circulant stochastic matrix, and
let x0 be a vector. An “asymptotic” canonical form is derived for Ak

(as k → ∞) as a tensor product of three simple matrices by employing
a pseudo-invariant on sections of states for a Markov process with tran-
sition matrix A′, and by analyzing how A acts on the sections, through
its auxiliary polynomial. An element-wise asymptotic characterization of
Ak is also given, generalizing previous results to cover both periodic and
aperiodic cases. For a particular circulant stochastic matrix, identifying
the intermediate stage at which fractions first appear in the sequence
xk = Akx0 is accomplished by utilizing congruential matrix identities
and (0, 1)-matrices to determine the minimum 2-adic order of the co-
ordinates of xk through their binary expansions. Throughout, results
are interpreted in the context of an arbitrary weighted average repeat-
edly applied simultaneously to each term of a finite sequence when read
cyclically.

1. Introduction. Consider an initial configuration of n numbers
b0, b1, . . . , bn−1 distributed around a circle. Each number is then replaced
by the same predetermined weighted average of (possibly itself and) its
immediate and distant neighbors. More precisely, if c0, c1, . . . , cn−1 (cj ≥
0,
∑n−1

j=0 cj = 1) are the coefficients of a weighted average, we simulta-
neously replace each number bl with the average

∑n−1
j=0 cjbl+j where the

subscripts are taken mod n. The result is one application of an averaging
scheme, or “averaging around the circle” once. We wish to investigate what
happens when a particular averaging scheme is applied repeatedly, begin-
ning with a given initial configuration. The following problems [9, 11] are
the prototypes of what we mean by averaging around the circle.

PROBLEM 1 Given n numbers in a circle, replace each number with
the average value of itself and its clockwise neighbor for each successive
pass.

(b0, b1, . . . , bn−2, bn−1) 7→ (
b0 + b1

2
,
b1 + b2

2
, . . . ,

bn−2 + bn−1

2
,
bn−1 + b0

2
).
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Prove that the sequence converges. Characterize the limit situation.

PROBLEM 2 Given n numbers in a circle, replace each number with
the average value of itself and its clockwise second neighbor for each suc-
cessive pass.

(b0, b1, . . . , bn−2, bn−1) 7→ (
b0 + b2

2
,
b1 + b3

2
, . . . ,

bn−2 + b0

2
,
bn−1 + b1

2
).

Prove that if n is odd then the sequence converges to the average of
the numbers while if n is even then it eventually approaches the limit
(E, O, E, O, . . .) with E and O being the averages of the numbers at even
and odd positions, respectively.

PROBLEM 3 Given n numbers in a circle, replace each number with
the average value of its immediate neighbors for each successive pass.

(b0, b1, . . . , bn−2, bn−1) 7→ (
bn−1 + b1

2
,
b0 + b2

2
, . . . ,

bn−3 + bn−1

2
,
bn−2 + b0

2
).

Prove that if n is odd then the sequence converges to the average of
the numbers. If n is even then it eventually approaches the limit cycle
. . . 7→ (E, O, E, O, . . .) 7→ (O, E, O, E, . . .) 7→ . . . with E and O being the
averages of the numbers at even and odd positions, respectively.

Many problems of this type can be found in a geometrical context such
as regular generation of nested polygons [3] or at a more complex level, the
Petr–Douglas–Neumann theorem on n-gons. These problems are often han-
dled by methods presented in this paper.

In addressing problems regarding averaging around the circle, we con-
sistently let x0 = (b0, b1, . . . , bn−1) denote the initial configuration, and
let xk = (b(k)

0 , b
(k)
1 , . . . , b

(k)
n−1) be the result of k applications of the relevant

averaging scheme. In Sections 2 through 4 our focus is Problem 1. In
Section 2 we present a direct enumerative solution using lacunary sums,
or more precisely sections of binomial coefficient sums. In matrix form,
divisibility properties of these lacunary sums are applied in Section 4 to
analyze the stage at which fractions first appear, when beginning with an
initial configuration of integers (Theorems 2-4).

It is natural to approach these problems by describing the updating
averaging step as multiplication by an appropriate n×n matrix A = (aij):
x1 = Ax0, and thus, xk = Akx0 (where the vectors xk are taken as column
vectors). In this case, each row sum of A is equal to one. A matrix of
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nonnegative entries with this property is called a row-stochastic or simply
a stochastic matrix. (A matrix is called column-stochastic if A′ is stochastic
and doubly stochastic if both A and A′ are stochastic.) Further, each row of
A is a simple circular shift of its first row: ai,i+j = a0,j (where the second
subscript is taken mod n). Such matrices are called circulant matrices,
and therefore, A = circ[a00, a01, . . . , a0,n−1] is completely determined by
its first row. It can be easily checked that any circulant stochastic matrix
is automatically doubly stochastic and its transpose is circulant as well. In
Section 3 we use circulant matrices to solve Problem 1 while in Section 5
we do the same for Problems 2 and 3.

Circulant matrices have attractive properties, many of which we will be
using. Among others, it is easy to explicitly determine the eigenstructure
of any circulant matrix A = circ[c0 = a0,0, c1 = a0,1, . . . , cn−1 = a0,n−1].
Let ω = ωn be the first nth root of unity. The eigenvalues are given
by evaluating the auxiliary (sometimes also called auxiliary companion or
representer) polynomial pA(x) =

∑n−1
i=0 cix

i at the nth roots of unity, ωj,
and thus λj(A) = p(ωj), j = 0, 1, . . . , n−1, while the eigenvectors are simply
the corresponding columns of the n × n Fourier matrix (ωij)i,j=0,1,...,n−1,
independent of the entries of the circulant matrix. Addition and matrix
multiplication correspond to addition and multiplication mod(xn − 1) of
their auxiliary polynomials. It follows, in particular, that circulant matrices
commute. Many of these properties are easily implied by the fact that A =
pA(E) with the forward shift permutation matrix E = circ[0, 1, 0, . . . , 0].

By viewing the elements of the stochastic matrix A′ = (aji) as tran-
sition probabilities and x′

0 as an initial state probability distribution, the
study of the convergence of xk = Akx0 as k → ∞ can be modeled by
Markov chains. In Section 6, we offer a brief overview of the terminology
of Markov chains that we will freely use throughout the remainder of the
paper. In our study the structure of the spectrum of A plays an important
role, and so, we make mention of the Perron–Frobenius theorem, central to
the study of matrix spectra. However, we prefer to rely on the auxiliary
polynomial to provide spectral information (cf. Lemma). We note that
problems that can be attacked using a Markov chain based approach have
become increasingly popular in recent years, e.g., [7].

In Section 7 we introduce an approach (Theorems 6 and 7), coordinat-
ing the use of an invariant and a finely-tuned pseudo-invariant [11], that
solves Problems 2, 3 and the general case (Theorem 8), and ultimately
delivers an asymptotic canonical form for the powers of A and its entries
(Theorem 9 and remarks). Our results generalize and extend those derived
in [8]. In Section 8 we briefly touch on the problem of the first appearance
of fractions for other averaging schemes.
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2. First solution: direct enumeration. We set b = 1
n

∑n−1
i=0 bi to be

the arithmetic mean of the numbers (b0, b1, . . . , bn−1) and prove that the
limit in Problem 1 is b = (b, b, . . . , b). After a few preliminary exploratory
computations (e.g., for the 0th position, b

(1)
0 = 1

2 (b0 + b1), b
(2)
0 = 1

4 (b0 +
2b1 + b2), b

(3)
0 = 1

8
(b0 + 3b1 + 3b2 + b3), etc.), while keeping in mind the

wrap-around structure, one easily conjectures that

b
(k)
l =

min{k,n−1}∑

j=0

Sj,kbl+j .

where

(2.1) Sl,k =
bk/nc∑

t=0

1
2k

(
k

l + nt

)
.

Induction on k will confirm the conjecture. The key to the induction step
is that b

(k+1)
l = 1

2 (b(k)
l + b

(k)
l+1) directly parallels the identity 1

2k+1

(
k+1
l+nt

)
=

1
2 [ 1

2k

(
k

l+nt

)
+ 1

2k

(
k

l−1+nt

)
]. A typical argument with roots of unity will show

that for each l the lacunary sum 1
2k

∑
t

(
k

l+nt

)
is asymptotically equal to

1/n as k → ∞ [2]. This yields the limit b for b
(k)
l as k → ∞.

3. Second solution: proof with circulant matrix. Here is another
and perhaps, more standard approach based on stochastic matrices. Let

A = circ[0.5, 0.5, 0, . . ., 0] =




.5 .5 0 0 . . . 0
0 .5 .5 0 . . . 0

. . . . . . . . . . . . . . . . . .
.5 0 0 0 . . . .5




be the circulant stochastic matrix reflecting the averaging scheme in Prob-
lem 1. We want to calculate xk = Akx0 as k → ∞. To obtain this
we need the asymptotic behavior of Ak. The auxiliary polynomial of A
is pA(x) = 0.5 + 0.5x, so the eigenvalues of A are λj(A) = pA(ωj) =
0.5 + 0.5ωj, j = 0, 1, . . . , n− 1.

All of the eigenvalues are different since we can think of them as
different points on the circle of radius 0.5 with its center at 0.5 on the
x-axis. Thus, any dominant eigenvalue has magnitude |λ| = 1, imply-
ing that λ = 1 is the one and only eigenvalue of largest magnitude.
Note that v0 = 1√

n
e = 1√

n
(1, 1, . . . , 1) is the corresponding unit eigen-

vector of both A and A′ (and any other circulant stochastic matrix as
well). This yields the convergence of Ak to v0v

′
0 = 1

n
J , thus guaranteeing

limk→∞ Akx0 = b = (b, b, . . . , b).
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Interested readers may wish to consult Clark’s paper [1] on the use of
circulant matrices for solving other combinatorial problems. Davis’ book
[3] gives a comprehensive treatment of circulant matrices.

4. The first appearance of fractions. Having established that the
sequence xk = Akx0 converges to b = (b, b, . . . , b) where b is the average
of the coordinates of x0, we now shift our attention to the sequence itself.
Can the sequence reach its limit in a finite number of steps, and if so, under
what conditions? We address this in Theorem 1.

Now, if for example, the initial configuration x0 consists only of inte-
gers, eventually fractions must appear in the sequence. A natural question
to ask is: can we say anything about when this happens? We lightly touch
upon this in Theorem 1 but highlight it in Theorems 2-4. For such an
initial configuration, let f denote the number of steps before the sequence
“fractionizes,” i.e., before a fraction is first introduced into the sequence.
What can we say about the value of f?

First, note that A is nonsingular when n is odd since pA(ωj) = 0.5 +
0.5ωj 6= 0 for all j. Thus, if b is reached then initially x0 = b. On the other
hand, if n is even, the null-space of A is one-dimensional since pA(ωj) = 0
if and only if j = n

2 , and is spanned by u = (1, −1, 1, −1, . . . , 1, −1).
Furthermore, u is not in the range of A. Thus, if b is reached then initially
x0 = b + tu. If x0 consists only of integers then, to avoid fractions, t
and b must be integers. In terms of the numbers around the circle, the
limit is reached if and only if x0 = (b, b, . . . , b) or n is even and the initial
configuration has the form x0 = (E, O, . . . , E, O) where E + O = 2b. This
simple result will make a cameo appearance in the discussion preceding
Theorem 4.

Since our matrices can be diagonalized, in a little more general form,
we have the following

THEOREM 1. Let A be a circulant stochastic matrix. If A is non-
singular then the limit b is reached immediately only with x0 = b. If A is
singular then the limit b is reached if and only if x0 = b + w, with Aw = 0;
immediately if w = 0 or in one step otherwise. Fractionizing is avoided if
and only if b (and w in the singular case) consists entirely of integers.

From now on, assume that the initial configuration x0 has only in-
teger coordinates. In all cases not covered by the theorem, fractionizing
must eventually occur. In fact, fractions are guaranteed when the range
Rk of xk = Akx0 (defined to be the difference between the maximum and
minimum coordinates) drops below one. By observing that the minimum
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entry of the matrix An is a = 1/2n−1 and by applying to the range Rnk of
xnk = Ankx0 the bound to be established in the proof of Theorem 5 in Sec-
tion 7, Rnk ≤ (1 − 1/2n−1)nkR0 is less than one when k > (2n−1/n) lnR0.
But, how tight is this bound? How far can a sequence go before fractioniz-
ing?

Clearly, if 2K | gcd(b0, b1, . . . , bn−1) then fractionizing happens in
more than K steps. In fact, this bound is sharp provided K < n − 1, in
the sense that f can be made to equal K + 1 as the initial configuration
x0 = (2K , 2K+1, 2K+1, . . . , 2K+1) shows, by yielding a sequence which has
b
(k)
0 = 2K−k(2k+1−1) for 0 ≤ k ≤ K +1, and thus making b

(K+1)
0 a fraction

while for all k : 0 ≤ k ≤ K, all values b
(k)
l are divisible by 2K−k.

On the other hand, K alone is an incomplete predictor of when
fractionizing occurs. For instance, given a specific value for K, f can
be made arbitrarily large if one begins with a configuration of the form
x0 = (2K(2k + 1), 2K(2k+1 + 1), . . . , 2K(2k+n−1 + 1)) provided n ≥ 3.
Then fractions occur for the first time at step K + k + 1, i.e., f = K + k.
Nevertheless, these examples suggest the important role played by powers of
2 and further, a connection between the binary expansions of the numbers
involved in the initial configuration and the number of steps required for
fractionizing to occur. In fact, in the case when n is odd, the relationship
is particularly simple as shown by the following theorem, and can be easily
modified when n is even with an odd factor. The surprisingly complex case,
which we will consider last, is when n is a nontrivial power of two.

Case 1. n is odd

THEOREM 2. Suppose n ≥ 3 is odd. Write each of the numbers
b1, b2, . . . , bn (the coordinates of x0) in base 2. Assume that l is the small-
est power of two where both 0 and 1 appear among the coefficients of 2l in
the binary expansions of b1, b2, . . . , bn, i.e., where the binary expansions of
b1, b2, . . . , bn first differ. Then, it takes exactly l + 1 steps to fractionize,
i.e., f = l.

Proof. Throughout this section it will be convenient to write A = 0.5C,
where C = circ[1, 1, 0, . . ., 0]. If the coordinates of x0 are not all equal,
then l in the hypothesis is the maximum l for which all of the coordinates
can be written in the form bj = c + dj2l, where c (0 ≤ c < 2l) is the
initial portion common to all of the coordinates. By additivity, we need
only examine the behavior of Ak(2ld) = 2l−kCkd for the initial configura-
tion 2ld = 2l(d0, . . . , dn−1) and thus, fractions occur for the first time when
k = l + 1, if at least one coordinate of Ckd is odd. But, both even and
odd numbers can be found among the djs. Furthermore, by induction on
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k, both parities occur in Ckd = (d(k)
0 , d

(k)
1 , . . . , d

(k)
n−1), for if true for k − 1

(k ≥ 1), then two adjacent entries d
(k−1)
i and d

(k−1)
i+1 (or d

(k−1)
n−1 and d

(k−1)
0 )

have opposite parity, so d
(k)
i is odd. However, if all of the coordinates of

Ckd were odd, then the odd number of coordinates of Ck−1d would have
to alternate parity around the circle, which is impossible. Thus, fractions
are avoided only up to and including step l, i.e., f = l.

In the following, we use tensor notation to ease notational complex-
ity and to emphasize the similarity in the block structure of many of the
matrices we will encounter. Recall that the tensor (or Kronecker) product
of the m × n matrix P = (pij) and the m′ × n′ matrix Q = (qi′j′) is the
mm′ × nn′ matrix P ⊗ Q formed by replacing each entry pij of matrix P
with the matrix block pijQ, so that (P ⊗ Q)im′+i′, jn′+j′ = pijqi′j′.

Case 2. n is even with an odd factor

An extended argument along the same lines as above can be given
for the case when n is even, provided that n has at least one nontrivial
odd factor. Assume n = 2mr where r ≥ 3 is odd. Then, by inducting on
m it is easy to see that C2m

n ≡ Cr ⊗ I2m (mod 2), where the subscripts
indicate the dimensions of I and C = circ[1, 1, 0, . . ., 0]. Essentially, this
shows that at steps k that are multiples of 2m, Ak

nx0 = 0.5kCk
nx0 can

be partitioned into 2m independent processes: Ak
r bi = 0.5kCk

r bi, where
bi = (bi, bi+2m, bi+2·2m . . . , bi+(r−1)2m) is the ith section of the original con-
figuration x0, each being an independent odd case covered by Theorem 2.
After a little effort reintegrating the results for each of the sections, one
arrives at the following

THEOREM 3. Suppose n = 2mr is even with r ≥ 3 odd.
For each i = 0, 1, . . . , 2m − 1, we write each of the numbers
bi, bi+2m, bi+2·2m . . . , bi+(r−1)2m (the ith section of x0) in base 2. Let li ≥ 0
be the smallest power of two for which both 0 and 1 can be found as coeffi-
cients of 2li in the binary expansions of these numbers. In other words, li is
the power of two corresponding to the first position where the binary expan-
sions of bi, bi+2m , bi+2·2m . . . , bi+(r−1)2m do not all agree. Then, f = mini li.

Case 3. n is a nontrivial power of 2

The situation when n is a nontrivial power of 2 is unusual because in
this case and only in this case, powers of C = circ[1, 1, 0, . . . , 0] can be
found with all even entries, which can extend the number of steps before
fractionizing occurs. In fact, a power of C can be found with all entries
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divisible by any given power of 2. To take this into account, we will need
the following

Facts about powers of C: If C = circ[1, 1, 0, . . . , 0] and E =
circ[0, 1, 0, . . . , 0] = C − I are n × n where n = 2m, then powers of C
that are multiples of 2m−1 take on a particularly simple pattern.

F1: 2 does not divide Ct, 0 ≤ t < 2m−1, and 2s−1 is the highest
power of 2 dividing Cs·2m−1+t, s ≥ 1, 0 ≤ t < 2m−1

F2: C2m−1 ≡




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


⊗ I2m−2 ≡

(
I I
I I

)
mod 2

F3:

2−2r+1C(2r)2m−1 ≡




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 ⊗ I2m−2 ≡

≡
(

I I
I I

)
mod 2, r ≥ 1

F4:

2−2rC(2r+1)2m−1 ≡




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 ⊗ I2m−2 ≡

≡ E2m−2
(

I I
I I

)
mod 2, r ≥ 1

Note that the right hand sides of F3 and F4 do not depend on r.

These matrix facts are translations of results on the divisibility prop-
erties of lacunary sums of binomial coefficients derived in [10] appearing as
coefficients in the auxiliary polynomial pCk(x) ≡ (1 + x)k mod (xn − 1)
for Ck. (Fact F1 is included as background for F2-F4. Also repeat-
edly used will be the simple observation that with integer matrices A and
B : gcd(A) gcd(B)| gcd(AB) with gcd(D) denoting the greatest common
divisor of all entries in matrix D.)

Suppose each coordinate bi of the initial configuration x0 =
(b0, b1, . . . , bn−1) is written in its binary form bi = βi,0 + βi,12 + βi,222 +
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· · · + βi,d2d. Then x0 = β
0

+ β
1
2 + β

2
22 + · · · + β

d
2d, where each

β
j

= (β0,j, β1,j, . . . , βn−1,j) is a (0, 1)-vector. We consider each β
j
2j 6= 0

separately as an elementary initial configuration and determine when it
fractionizes. If any one of the initial configurations β

j
2j fractionizes at

step k before the rest, then by additivity, the sum x0 of the elementary
initial configurations will fractionize at that same step k.

An analogy might be helpful here and throughout. We can imagine a
race with each initial configuration β

j
2j as a contestant initially located in

binary position j corresponding to the power 2j, the goal of the race being
the first to fractionize. At each time step, the averaging scheme is applied.
After k applications the contestant has reached the binary position s where
2s is the greatest power of 2 that divides all components of Ak

(
β

j
2j
)
.

If one contestant passes the “finishing line” before any of the others (i.e.,
passes beyond the 0th or unit binary position) then the sum x0 fractionizes
at that same precise time step. (Ties will be considered later.)

Now, define the rotational period (or simply the period) of β
j

to be the
least p > 0 such that βi+p,j = βi,j for all i where the first subscript is taken
mod n. Then p|n = 2m and p is a power of 2. If p = n we say that β

j
is

rotationally asymmetric. The period p determines how slowly the process
of repeated averagings fractionizes the initial configuration β

j
2j . If p = 1

then β
j
2j is constant and at no step k will Ak

(
β

j
2j
)

contain a fraction, so

β
j
2j will not fractionize. If p = 2 then we are in the context of Theorem 1

and β
j
2j fractionizes in one step if j = 0 (i.e., f = 0). Otherwise, β

j
2j

never fractionizes.

If 2 < p < n, then the initial configuration β
j
2j of size n can be

reduced to an initial configuration of size p because the coordinates of
β

j
= (1, 1, . . . , 1)n/p ⊗ (β0,j, β1,j, . . . , βp−1,j) are simply the first p co-

ordinates of β
j

repeated n/p times. The result of k successive averages

of Ak
n

(
β

j
2j
)

= (1, 1, . . . , 1)n/p ⊗Ak
p

(
(β0,j, β1,j, . . . , βp−1,j)2j

)
, is the same

as k successive averages of the initial configuration (β0,j, β1,j, . . . , βp−1,j)
around a circle of size p. Thus, without loss of generality, we can reduce β

j

to its first p coordinates and reduce the dimension n to match the period
p to get the following final case.

When n = 2m = p, note that C2m−1
β

j
6≡ 0 (mod 2), for
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(
I I
I I

)
β

j
≡ 0 (mod 2) (cf. F2) would imply p|2m−1, contrary to the

case we are considering. On the other hand, C2m

β
j
≡ 0 (mod 2) since

2|C2·2m−1
(cf. F3 with r = 1). So, let 0 < ϕ ≤ 2m−1 be least such

that C2m−1+ϕβ
j
≡ 0 (mod 2). Note that this implies

(
I I
I I

)
Cϕβ

j
≡

0 (mod 2) but
(

I I
I I

)
Cϕ−1β

j
6≡ 0 (mod 2) (cf. F2). Now for k ≥ ϕ,

we claim that the highest power of 2 that divides (all entries of) Ckβ
j

is

2b
k−ϕ

2m−1 c. To show this, it suffices to show that for the extremes of the range
s ·2m−1 +ϕ ≤ k < (s+1)2m−1 +ϕ, (s ≥ 1, s = 0 being obvious) the highest
power of 2 dividing Ckβ

j
is 2s.

But for the upper end C(s+1)2m−1+ϕ−1β
j

= C(s+1)2m−1
Cϕ−1β

j

and 2−sC(s+1)2m−1
is a matrix of integers congruent to

(
I I
I I

)
or

E2m−2
(

I I
I I

)
(mod 2) (cf. F3 and F4). Thus 2−sC(s+1)2m−1

Cϕ−1β
j
6≡

0 (mod 2), so C(s+1)2m−1+ϕ−1β
j

is divisible by 2s and no higher power of
2.

The preceding directly implies that at the lower end Cs·2m−1+ϕβ
j

=

Cs·2m−1
Cϕβ

j
is not divisible by any power of 2 beyond 2s. On the other

hand, 2−s+1Cs·2m−1
is a matrix of integers congruent to

(
I I
I I

)
or

E2m−2
(

I I
I I

)
(mod 2) (cf. F3 and F4). Thus 2−s+1Cs·2m−1

Cϕβ
j
≡

0 (mod 2), so Cs·2m−1+ϕβ
j

is divisible by 2s. We are now ready to estab-
lish

THEOREM 4. Suppose β
j
, j ≥ 0, is a rotationally asymmetric (0, 1)-

vector of size (and period) p. Then Ak(β
j
2j), i.e., the averaging scheme A

applied k times to the elementary initial configuration β
j
2j, avoids fractions

only up to and including step k = f where

f =

{
j, if j < ϕ,⌊

pj−2ϕ
p−2

⌋
, if j ≥ ϕ.

Proof. This is clear for j < ϕ, for the initial configuration β
j
2j avoids frac-
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tionizing in k < 2m−1+ϕ averages as long as Ak
(
β

j
2j
)

= 2j−kCkβ
j

avoids
fractions, which occurs for the last time when k = j. On the other hand,
if j ≥ ϕ, then one can average k ≥ ϕ times before the initial configuration
β

j
2j fractionizes. We calculate

(4.1) Ak
(
β

j
2j
)

= 2j−k+b k−ϕ

2m−1 c
[
2−b

k−ϕ

2m−1 cCkβ
j

]

where the expression in the square brackets has integer entries of both par-
ities. The maximum k for which j − k +

⌊
k−ϕ
2m−1

⌋
≥ 0 can be checked to be

k =
⌊

2m−1j−ϕ
2m−1−1

⌋
=
⌊

pj−2ϕ
p−2

⌋
.

One way to interpret this result is to rewrite the formula for

f =

{ j
1 , if j < ϕ,⌊

ϕ
1

+ j−ϕ
1− 2

p

⌋
, if j ≥ ϕ,

and consider the numerators as distances and denominators as “average”
velocities in the racing context. For a contestant’s configuration β

j
2j ini-

tially located in the jth binary position where j < ϕ, k ≤ ϕ applications
of the averaging scheme give the result Ak

(
β

j
2j
)

= 2j−kCkβ
j
. Thus, for

each time step, the averaging scheme is applied once, k increases by 1, the
common power of 2 decreases by 1, and the contestant is one binary position
closer to the goal. Thus, the contestant approaches the goal with velocity
1 from the initial binary position j. On the other hand, if the contestant
begins in binary position j ≥ ϕ, for the first ϕ applications of the averaging
scheme, the contestant’s position decreases with velocity 1 as before. But
for k ≥ ϕ applications of the averaging scheme we have the more compli-
cated result (4.1). Again, for each time step, k increases by 1, decreasing
the common power of 2 by 1 except when k ≡ ϕ − 1 (mod 2m−1) where
no decrease occurs. Thus, in 2m−1 time steps, the contestant advances
2m−1 − 1 binary positions with velocity 2m−1−1

2m−1 = 1 − 2
p . Thus, to reach

the finish line, essentially, the contestant advances with velocity 1 through
the first ϕ time steps and with velocity 1 − 2

p through the final j − ϕ from
initial binary position j to final binary position 0 immediately before frac-
tionizing.

We conclude that from their various initial positions, no contestant
approaches fractionizing with a velocity greater than 1; that except for
contestants with periods p = 1 and 2, who initially or after one step, re-
spectively “lose strength” and stop, all other contestants begin with the
same velocity 1 through their initial stretch of length ϕ, but beyond the
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initial stretch, immediately decrease their velocities below 1, to velocities
completely determined by their period, with smaller velocities correspond-
ing to smaller periods.

We include here a simple algorithm for determining ϕ for a given (0, 1)-
vector z of size and period n = p = 2m. The strategy is to search for powers
of 2, beginning with 2m−1 and working downwards that, when collectively
used as exponents for C, the resulting product will not annihilate z when
taken mod 2. In other words, begin with εm−1 = 1 and select εm−i = 0 or
1, i = 2, 3, 4, . . ., m, with as many εm−is as possible equaling 1 while still
maintaining C2m−1

Cεm−22m−2
Cεm−22

m−2
. . .Cε0z 6≡ 0 (mod 2). The result-

ing power of C will be 2m−1 + ϕ − 1, the maximum power of C that does
not annihilate z. Then, ϕ = εm−22m−2 + εm−32m−3 + · · ·+ ε0 + 1.

The following algorithm systematically determines the εm−is while
avoiding repetitions due to progressively smaller periods.

ALGORITHM. The strategy is:

1. begin with z0 = z of size 2m and let εm−1 = 1;

2. having found zi of size 2m−i: if the period of zi is 2m−i then let
εm−i−1 = 1 and let zi+1 ≡ (z0 + z2m−i−1 , z1 + z2m−i−1+1, z2 +
z2m−i−1+2, . . . , z2m−i−1−1 + z2m−i−1) (mod 2) of size 2m−i−1; oth-
erwise, let εm−i−1 = 0 and let zi+1 = (z0, z1, . . . , z2m−i−1 ) of size
2m−i−1;

3. end when ε0 is determined.

Then the least k for which Ckz ≡ 0 (mod 2) is k = εm−12m−1 +
εm−22m−2 + · · ·+ ε0 + 1 and ϕ = εm−22m−2 + · · ·+ ε0 + 1.

For example, suppose z = (1,1,0,0,0,1,1,0). Then, n = 8 and m = 3,
and z0 = (1, 1, 0, 0, 0,1,1,0) with ε2 = 1, z1 = (1, 0, 1, 0) with ε1 = 0,
and z2 = (1, 0) with ε0 = 1, so k =

[
1(22) + 0(2) + 1

]
+ 1 = 6 and

ϕ = [0(2) + 1] + 1 = 2.

We conclude with a few observations and an example. When analyzing
the number of steps before the initial configuration x0 = β

0
+β

1
2+· · ·+β

d
2d

fractionizes, we divide the individual elementary initial configurations β
j
2j

into groups according to period. Those with period p = 0 can be immedi-
ately disregarded and those with period p = 1 can as well, unless j = 0, with
fractionizing occurring in one step. For each of the other periods present,
only the elementary initial configuration with the smallest j in the group
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corresponding to the period need be considered as a candidate for winning.
The value of f for each candidate can be calculated, and if one value is
strictly less than all others, then this minimum is the value of f for the
initial configuration x0. Otherwise, there is a tie, when two or more can-
didates fractionize at the same step. Then it is possible that Af+1

(
β

j
2j
)

contain fractions for two or more individual candidates β
j
2j, while the sum

Af+1x0 = Af+1β
0

+ Af+1
(
β

1
2
)

+ · · · + Af+1
(
β

d
2d
)

contains only inte-
gers, thus delaying the fractionizing step. However, because of difference in
velocity, this cannot continue beyond the point where one summand leads
the rest in the sense that it contains a fraction whose denominator is a
power of 2 strictly greater than the denominators of the other summands.
Then, the exponent for this dominant power of 2 can be used to trace back
to an upper bound on the step before fractionizing, since each averaging
step can increase the denominator by at most one power of 2.

EXAMPLE. Suppose we begin with the numbers:

b0 = 481 = 001111000012

b1 = 1473 = 101110000012

b2 = 161 = 000101000012

b3 = 1985 = 111110000012

b4 = 417 = 001101000012

b5 = 1153 = 100100000012

b6 = 481 = 001111000012

b7 = 1665 = 110100000012

We wish to find the last step before fractionizing. We break up the columns
according to their individual periodicities:

period 1: columns corresponding to the 20, 21, 22, 23, 24, 27 places.
period 2: columns corresponding to the 25, 210 places.
period 4: column corresponding to the 29 place.
period 8: columns corresponding to the 26, 28 places.

Only that column in each period category corresponding to the lowest
power of 2 need be considered. Those of period 1 are immediately thrown
out. Their velocity is 0. Those of period 2 will not fractionize. The
smallest power of 2 in this category is not 20, so these will not fraction-
ize. We need only consider the columns corresponding to 29 and 26 (as
26 is the frontrunner for the velocity corresponding to p = 8). For 29,
p = 4 = 22, m = 2, j = 9 and β

9
= (0, 0, 0, 1). Now, z0 = (0, 0, 0, 1)

has period 4 so ε1 = 1 and z1 ≡ (0 + 0, 0 + 1) ≡ (0, 1) (mod 2). Fur-
ther, z1 = (0, 1) has period 2, so ε0 = 1. Thus ϕ = ε020 + 1 = 2 and
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f =
⌊

pj−2ϕ
p−2

⌋
=
⌊

(4)(9)−2(2)
4−2

⌋
= 16. For 26, p = 8 = 23, m = 3, j = 6

and β
6

= (1, 1, 0, 1, 0, 0, 1, 0). Now, z0 = (1, 1, 0, 1, 0, 0,1,0) has period
8, so ε2 = 1 and z1 ≡ (1 + 0, 1 + 0, 0 + 1, 1 + 0) ≡ (1, 1, 1, 1) (mod 2).
Next, z1 doesn’t have period 4, so ε1 = 0 and z2 = (1, 1). Finally, z2

doesn’t have period 2, so ε0 = 0. Thus ϕ = ε12 + ε0 + 1 = 1 and
f =

⌊
pj−2ϕ
p−2

⌋
=
⌊

(8)(6)−2(1)
8−2

⌋
= 7. Consequently, for the original num-

bers, f = 7, the minimum between the two possibilities.

In the last section, we will return to these issues, where we briefly
comment on other averaging schemes.

5. Solutions to Problems 2 and 3 by circulant matrices. We now
solve Problems 2 and 3 with our eyes open to structural characteristics
that may show up in general. First we note that, with a bit of ingenuity,
both problems can be reduced to Problem 1. If n is odd, the reduction
is exact for Problem 2 after reordering the positions so that the even po-
sitions come before the odd positions (i.e., positions 0, 2, 4, . . . , 1, 3, 5, . . .).
Then Problem 3 is reduced to Problem 2 by following each application of
the averaging scheme with a clockwise shift of the original labeling. If n
is even, the positions are split into two groups: the even positions and the
odd positions. In Problem 2, it is clear that the averaging scheme acts on
each group independently, while in Problem 3, one application of the aver-
aging scheme acts on each group to exclusively determine the values in the
other group, resulting in alternating behavior between the groups. Either
way, the problems are reduced to two independent instances of Problem 1.
(Therefore, the fractionizing questions for all instances of Problems 2 and
3 can be answered directly by the results in Section 4.)

At this point it is difficult to see whether or not the splitting strategy
used above applies to any given averaging process around the circle, and if
it does, how it is to be accomplished. Perhaps the eigenvalue route used in
Section 3 will be more helpful.

The circulant matrix corresponding to the averaging scheme used in
Problem 2 is A = circ[0.5, 0, 0.5, 0, . . ., 0] where the auxiliary polynomial
pA(x) = 0.5 + 0.5x2 determines the eigenvalues to be λj(A) = 0.5 + 0.5ω2j

with |λj(A)| ≤ 1. If n is odd then |λj(A)| = 1 precisely when j = 0,
giving the eigenvalue λ0(A) = 1 of multiplicity one, and the problem can
be finished as in Section 3.

When n is even, |λj(A)| = 1 precisely when ω2j = 1, i.e., when j = 0
and n

2
. Both give the single dominant eigenvalue λ = 1 with multiplicity

2. One easily checks that its two-dimensional eigenspace is spanned by the



15

orthonormal eigenvectors v0 = 1√
n
e = 1√

n
(1, 1, . . . , 1, 1) and v1 = 1√

n
u =

1√
n
(1,−1, . . . , 1,−1). Therefore, we get Akx0 ≈

(
1kv0v

′
0 + 1kv1v

′
1

)
x0 =

1
ncirc[2, 0, . . . , 2, 0] x0 = (E, O, . . . , E, O) (in the sense that the difference
approaches 0 as k → ∞), where E = 2

n(b0 + b2 + · · · + bn−2) and O =
2
n(b1 + b3 + . . . + bn−1).

For Problem 3 the matrix A = A′ has auxiliary polynomial pA(x) =
0.5x + 0.5xn−1 = x(0.5 + 0.5xn−2) and eigenvalues λj(A) = ωj(0.5 +
0.5ω(n−2)j). We note again that |λj(A)| ≤ 1. The case with n odd is
identical to that above. When n is even, |λj(A)| = 1 precisely when
the second factor 0.5 + 0.5ω(n−2)j = 0.5 + 0.5ω−2j has magnitude one,
i.e., when j = 0 and n

2 . But here, the first factor gives us two different
eigenvalues: λ0(A) = 1 and λn/2(A) = −1, each with eigenspace spanned
by v0 and v1, respectively. Then Akx0 ≈

(
1kv0v

′
0 + (−1)kv1v

′
1

)
x0 =

1
n(c, c, c, c, . . . , c, c) + (−1)k 1

n (d,−d, d,−d, . . ., d,−d) with c =
∑n−1

i=0 bi and
d =

∑n−1
i=0 (−1)ibi. This yields limk→∞ A2kx0 = (E, O, E, O, . . ., E, O) and

limk→∞ A2k+1x0 = (O, E, O, E, . . ., O, E), with E and O defined as above.

From the solutions to Problems 1, 2 and 3, we see differing, though
related phenomena. Positions around the circle partition into natural sub-
sets (Problems 2 and 3), or are acted on as a whole (Problem 1) by the
averaging scheme. The result on each subset (or the whole) is to reach
a single common value, or to approach a cycle of values, and the values
are always averages of sections (or the whole) of the initial configuration.
At this point, the reader familiar with finite Markov processes will readily
recognize these patterns as limiting and asymptotically periodic behavior
on recurrent classes. Thus, in the next section, we review the ideas and
vocabulary of Markov chains.

In passing, we note that other similar problems can be solved by turn-
ing to eigenvectors as above. Here we mention only a particular one [11,
Problem 3.2.8]: There are n points on a circle, and each point is given a
number which is equal to the average of the numbers of its two nearest
neighbors. Show that all of the numbers must be equal. This problem can
be easily solved by observing that Ax0 = x0, with the setting of Problem 3,
the eigenvalue 1 is simple and e is a corresponding eigenvector. Another
approach would be to apply the extreme principle [11] to the coordinates
of x0.

6. Markov chains. We now wish to study the limiting behavior of aver-
aging schemes around the circle in general. It should be clear at this point
that, no matter what averaging scheme we consider, the fundamental task is
to characterize how powers of the corresponding circulant stochastic matrix
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behave asymptotically, and that the dominant eigenvalues in the spectrum
of the matrix play a central role in achieving this task. Fortunately, this is
ground already well covered in the context of finite Markov chains, and we
will liberally use ideas and terms from that field, which in this section we
intend to summarize for the benefit of the reader. We first consider how the
states of a Markov chain are partitioned, classified and characterized by its
transition matrix. Then we consider the eigenvalues of a transition matrix.
Throughout, we draw conclusions within the specific context of circulant
stochastic matrices.

A technicality: In studying the limiting behavior of xk = Akx0 we use
M = A′ as a transition matrix to fit the form x′

k = x′
0M

k commonly used
in Markov chains. However, that A (and A′) is circulant ultimately makes
this difference irrelevant to us, as will be explained below.

Suppose M = (mij) is an n × n stochastic matrix. The matrix M
can be interpreted as a transition matrix for a finite Markov chain with n
states, where mij is the probability of passing from state i to state j in one
step. Associated with the transition matrix M is its dependency graph G,
a digraph whose vertices V = {0, 1, 2, . . ., n − 1} are the states, and which
includes each edge i → j if and only if mij > 0. We say that states i and j
communicate with each other if there is a directed path in G from state i

to state j, and one from state j to state i. With the notation Mk = (m(k)
ij )

this means that there exist k1 and k2 so that m
(k1)
ij > 0 and m

(k2)
ji > 0.

This defines an equivalence relation that partitions the vertices into classes.
Graphically, each class is a strongly connected subgraph of G. If a Markov
chain (and its transition matrix) has only one class, it is called irreducible.

A state i is recurrent if the probability of returning to that state in a
finite number of steps is positive, i.e., if m

(k)
ii > 0 for some k. Otherwise,

i is transient. Both are class properties, so each class can be termed ei-
ther recurrent or transient. There must be at least one recurrent class, and
every recurrent class is closed, in the sense that every edge originating in
the recurrent class must terminate there as well. Our context is less com-
plicated. The circulant matrix A′ treats the states (i.e., positions around
the circle) in a rotationally symmetric manner. This guarantees that if
A′ is not irreducible (i.e., has more than one class) then all of the classes
are of the same size, are recurrent exclusively and partition the graph into
strongly connected sets that are mutually disconnected. In addition, the
states within each class are regularly distributed around the circle (i.e.,
each class is rotationally symmetric), and any two classes differ only by a
rotation. Furthermore, the symmetry of the communication relation im-
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plies that the classes of A and A′ are the same. All of these facts reveal
further structure within A. Indeed, through conjugation with an appropri-
ate permutation matrix, A is equivalent to a block diagonal matrix with as
many equal blocks as there are classes.

State i is periodic with parameter p if all closed paths through i have
a length that is a multiple of p, i.e., if m

(k)
ii > 0 implies p|k. The maximum

such p is called the period of state i. The period is also a class property,
so a class and A as well (if A is irreducible) are said to have period p. If
p = 1 then the state and its class are called aperiodic. A recurrent and
aperiodic state (or class) is also called an ergodic state (or class). A class
with period p > 1 can be partitioned into sets S0, S1, . . . , Sp−1, which we
will call cyclic sections, where the probability is 1 of transitioning from a
state in one section Sk to a state in the next section Sk+1 (taking Sp to be
S0), or equivalently if state i ∈ Sk and mij > 0 imply j ∈ Sk+1. In our
context, where the circulant matrix A′ treats all states equally, all classes
must be aperiodic or have the same period.

The averaging scheme in Problem 1 is an example of an irreducible and
aperiodic Markov chain where the recurrent class is the set of all positions
around the circle. The same can be said for Problems 2 and 3, when n is
odd. Otherwise, Problem 2 is not irreducible. It consists of two recurrent
classes (the even positions and the odd positions) each of which is aperi-
odic. In the even case, Problem 3 is irreducible, with one recurrent class
that can be partitioned into two cyclic sections (again the even and odd
positions), each with period 2.

The limiting behavior of a general Markov chain with transition matrix
M depends on the asymptotic behavior of Mk, which in turn is governed by
the dominant eigenvalues of M and their corresponding eigenvectors. The
results of Perron and Frobenius for eigenvalues of irreducible matrices with
nonnegative and with strictly positive elements, are central to the theory
of Markov chains for understanding what to expect in general about the
dominant eigenvalues of M . We include their results in the following form
in order to round out our discussion.

THEOREM A. (Perron–Frobenius) [4]. Let M be a matrix that is
assumed to be irreducible, i.e., its dependency graph is strongly connected.

(i) If M has (strictly) positive elements, then its eigenvalues can be or-
dered in such a way that

λ0 > |λ1| ≥ |λ2| ≥ · · · ,
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and M has a unique dominant eigenvalue; this eigenvalue is positive
and simple.

(ii) If M has nonnegative elements, then its eigenvalues can be ordered in
such a way that

λ0 = |λ1| = · · · = |λp−1| > |λp| ≥ |λp+1| ≥ · · · ,

and each of the dominant eigenvalues is simple with λ0 positive. Fur-
thermore, the quantity p is precisely equal to the period of the de-
pendency graph. If p = 1, in particular, then there is unicity of the
dominant eigenvalue. If p ≥ 2, the whole spectrum is invariant under
the set of transformations

λ 7→ λej(2πi/p), j = 0, 1, . . . , p− 1.

The theorem can be applied to each recurrent class of the dependency
digraph. In the special case of the stochastic matrix M, we can easily see
independently that λ0 = 1 is an eigenvalue, and all eigenvalues of M have
magnitude less than or equal to one. Thus, from Theorem A, either λ0 = 1
is the unique dominant eigenvalue of M, indicating a limit for Mkx0 as
k → ∞, or all of the dominant eigenvalues of M are equally distributed
roots of unity, suggesting an asymptotically periodic behavior for Mkx0.
Both can be followed up with tools of linear algebra to flesh out the details.
Note however, that if M has zero elements, one still needs additional work
to determine which of the two alternatives apply.

We are fortunate that in our context, the eigenvalues of a circulant
stochastic matrix are directly available through its auxiliary polynomial.
In fact, in the following lemma, we completely characterize the dominant
eigenvalues of a circulant stochastic matrix and establish the rotational
symmetry of its spectrum, all from the auxiliary polynomial alone, inde-
pendent of Theorem A.

LEMMA. Let A = circ[c0, c1, . . . , cn−1] be a circulant stochastic matrix
with L = {i|ci > 0}, u = minL = min{i|ci > 0}, L′ = {i − u|ci > 0},
and g = gcd(L′). Then, A has p = gcd(n, g)/ gcd(n, g, u) dominant eigen-
values λ = ωnj/p = ej(2πi/p), j = 0, 1, . . ., p − 1, each having multiplicity
gcd(n, g, u). Moreover, the spectrum of A is invariant under the rotational
transformation λ 7−→ λe2πi/p.

Proof. We generalize a portion of the argument in Section 5 used to
solve Problem 3. All eigenvalues of A are of the form λj(A) = pA(ωj) =
ωuj

∑
l∈L′ cl+uωlj where cl+u > 0 for all l ∈ L′. It follows that

∣∣pA(ωj)
∣∣ ≤
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1, and
∣∣pA(ωj)

∣∣ = 1 if and only if the second factor
∑

l∈L′ cl+uωlj = 1,
since both the leading term of the sum being real and

∑
l∈L′ cl+u = 1 to-

gether imply that
∑

l∈L′ cl+uωlj = 1 (and ωlj = 1 for all l ∈ L′) whenever∣∣∑
l∈L′ cl+uωlj

∣∣ = 1. The number of eigenvalues (counting multiplicities) is
therefore gcd(n, g), the number of solutions to gj ≡ 0 (mod n) i.e., j ≡ 0
(mod n

gcd(n,g) ). (Note: The first nonzero solution and the smallest positive
power of ω that yields

∣∣pA(ωj)
∣∣ = 1, is j = n

gcd(n,g) , a fact that will be used
in the proof of Theorem 7.)

Now, as j runs through the values j = n
gcd(n,g)k, k =

0, 1, . . . , gcd(n, g)− 1, the dominant eigenvalues pA(ωj) = ωuj run through
p = gcd(n,g)

gcd(n,g,u)
distinct values, gcd(n, g, u) times. Thus, the dominant eigen-

values are the pth roots of unity, each with multiplicity gcd(n, g, u).

The rotational symmetry of the spectrum is obtained by noting that
λj+k(A) = ωuj+uk

∑
l∈L′ cl+uωlj+lk = λj(A) e2πi/p, where p = gcd(n,g)

gcd(n,g,u) ,
if we can solve simultaneously both uk ≡ n

p (mod n) and gk ≡
0 (mod n) for k. But, the second congruence implies k = n

gcd(n,g)s

and the first becomes un
gcd(n,g)s ≡ ngcd(n,g,u)

gcd(n,g) (mod n), which has a

solution if gcd
(
n, un

gcd(n,g)

) ∣∣∣ngcd(n,g,u)
gcd(n,g) . In fact, gcd

(
n, un

gcd(n,g)

)
=

gcd
(

n
gcd(n,g) gcd(n, g), n

gcd(n,g)u
)

= n
gcd(n,g) gcd(n, g, u). Thus, we have ro-

tational symmetry through multiplication by e2πi/p.

We remark that the dominant eigenvalues of A are completely deter-
mined by the indices of the positive coefficients of its auxiliary polynomial.
Of course, the structure of the transition digraph associated with A guar-
antees this fact.

7. Invariant based derivation of structure results for the general
case. Suppose we wish to construct a simple and easily motivated proof
that under appropriately favorable but general conditions, repeated averag-
ing around the circle will result in a limit with values equal to the average
of the coordinates of x0 (as in Problem 1). We might separate the goal into
two tasks: (1) proving that the components of xk approach each other in
value, and (2) determining that there is a common limit and its value. The
second suggests establishing an invariant, and even suggests the invariant
to be used. It is easy to see that as long as A is stochastic, the average
of the components of xk = Akx0 remains the same, and thus, must be the
common value of the limit.
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The first task suggests searching for a useful pseudo-invariant, whose
value may change, but whose limit is zero precisely when there is a common
limiting value. The obvious candidates are measurements of the coordinate
spread of xk, such as its range as defined earlier, which we apply next.

THEOREM 5. Let A be an n×n stochastic matrix with strictly positive
elements. Then, for any column vector x0, Akx0 converges as k → ∞ to a
column vector with equal components and Ak itself converges to the matrix
1
n
J .

Proof. Let Mk, mk, and Rk = Mk − mk be the maximum and minimum
values and the range of xk = Akx0. Further, let a be the value of a minimal
entry of A. First, we note that mk is nondecreasing, for if b

(k+1)
i′ and b

(k+1)
i”

are maximal and minimal components of xk+1, then

mk+1 = b
(k+1)
i” =

n−1∑

j=0

ai”jb
(k)
j ≥

n−1∑

j=0

ai”jmk = mk.

Next, we bound the range. If b
(k)
j′ is a minimal component of xk, then

Mk+1 =
n−1∑

j=0

ai′jb
(k)
j ≤

n−1∑

j=0
j 6=j′

ai′jMk + ai′j′mk =

=
n−1∑

j=0

ai′jMk − ai′j′Mk + ai′j′mk = Mk − ai′j′(Mk − mk) =

= (1 − ai′j′)(Mk − mk) + mk ≤ (1 − a)(Mk − mk) + mk+1.

Thus,

Rk+1 = Mk+1−mk+1 ≤ (1−a)(Mk−mk) = (1−a)Rk ≤ (1−a)k+1R0 → 0

as k → ∞. So, Akx0 approaches the vector 1
n (x′

0e)e and thus, Ak → 1
nJ .

The above proof is similar to that of [6, pp. 448-9] used to prove “the
fundamental limit theorem” for regular Markov chains.

Note that Theorem 5 applies to any irreducible and aperiodic matrix
A because it can be shown that for a large enough power and beyond, Ak

has all positive terms. For example, in Problem 1 we can apply Theorem 5
to An, where a = 1/2n−1 is its minimum entry.

Unfortunately, the preceding argument does not directly generalize if
A is not irreducible (as in Problem 2, n even) or irreducible but not aperi-
odic (Problem 3, n even) as long as the average is applied to all coordinates
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of x0. Nor would an argument using variance of the coordinates, unless
in the case of Problems 2 we split as in Section 5. Nevertheless, we have
included the above argument for its elementary nature and for the sake
of completeness. More useful will be pseudo-invariants of the form ‖Lxk‖,
for carefully chosen matrices L dependent on A, which we introduce in the
next theorem.

THEOREM 6. Assume that the stochastic circulant matrix A is used
to form xk = Akx0. Then the sequence ||xk||, k = 0, 1, 2, . . ., is nonincreas-
ing. If λ = 1 is the only dominant eigenvalue of A, and has multiplicity
one, then xk converges to a limit vector with identical coordinates and A is
irreducible and aperiodic.

Proof. We set lk = ‖xk‖2 and consider dk = lk − lk+1 = x′
k (I − A′A) xk,

k ≥ 0. Now, M = I−A′A is positive semi-definite: |λj(A)| ≤ 1 for stochas-
tic A, and thus λj(M ) = 1 − |λj(A)|2 ≥ 0 for circulant M . It follows that
dk ≥ 0 and ‖xk‖ is nonincreasing (and in fact, must converge). (Pseudo-
invariants of this kind are called monovariants [11].)

Because M is positive semi-definite and symmetric, we can find a ma-
trix square root L such that L′L = I−A′A = M . Then for any such square
root, dk = ‖Lxk‖2 → 0 since

∑∞
k=0 dk = l0 converges. We will use ‖Lxk‖

as our pseudo-invariant.

Now, suppose λ = 1 is the dominant eigenvalue of A and has multiplic-
ity one. Then, M has eigenvalue λ = 0 with multiplicity one, and eigen-
vector 1√

n
e = 1√

n
(1, 1, . . . , 1). Because M is real and symmetric, we factor

M = UΛU ′ where U is orthogonal with 1√
n
e as its first column and set L =

Λ1/2U ′ to be our square root. The one-dimensional null-space of L is gen-
erated by e, for Le = Λ1/2U ′e = diag{0, λ

1/2
1 , . . . , λ

1/2
n−1}[

√
n, 0, . . . , 0]′ = 0.

Thus, ‖Lxk‖2 → 0 and the invariance of 1
n (x′

ke) for all k, yield xk → re
as k → ∞ with r = 1

n(x′
0e). Note that we have many choices for L,

e.g., we might just as well have taken the symmetric L = UΛ1/2U ′, for
L2 = L′L = UΛU ′ = M .

On the other hand, zero might be a multiple eigenvalue of L if the
conditions are relaxed and then ‖Lxk‖ → 0 does not imply the con-
vergence of xk though ‖xk‖ still converges. Nevertheless, ‖Lxk‖ → 0
may give us valuable information. For example, the special case A =
circ[c0 = 1/2, 0, . . ., 0, ct = 1/2, 0, . . . , 0] generalizes both Problems 1
and 2. For L, we take the circulant matrix C = I − A = circ[c0 =
1/2, 0, . . ., 0, ct = −1/2, 0, . . ., 0] which corresponds to the pseudo-invariant
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‖Cx‖2 =
n−1∑
i=0

|xi−xi+t|2
4 where the indices are taken mod n. Thus,

‖Cxk‖
2 → 0 implies asymptotic equality of all the coordinates of xk when

t = 1 (Problem 1) and when t = 2, n odd (half of Problem 2), while in the
case t = 2 and n even (the other half of Problem 2), the coordinates of xk

are partitioned into two sets with asymptotic equality on each set.

The next theorem shows that, in some sense, every averaging scheme
around the circle can be reduced to the above special case.

THEOREM 7. For any circulant stochastic matrix A and any ini-
tial configuration x0, let u and g be defined as above (in the Lemma).
Partition the n positions around the circle into gcd(n, g) subsets (or one
subset, if gcd(n, g) = 1): Sj = {s : s ≡ j (mod gcd(n, g)), 0 ≤ s < n},
j = 0, 1, . . . , gcd(n, g) − 1, and define the range of each xk = Akx0

when restricted to the subset Sj to be R
(k)
j = max

{
b
(k)
i : i ∈ Sj

}
−

min
{

b
(k)
i : i ∈ Sj

}
. Then, for each j, R

(k)
j → 0 as k → ∞.

Proof. Define t to be the maximum positive value that makes
∣∣pA(ωn/t)

∣∣ =
1. Then, by the note in the proof of the Lemma, t = gcd(n, g).

We set M = I − A′A, as in the proof of Theorem 6, and follow a
similar argument except that we choose C = circ[c0 = α, 0, . . . , 0, ct =
−α, 0 . . . , 0], α > 0, so that M = C′C + D with D being a positive semi-
definite matrix. In fact, we want that pD(ωk) ≥ 0, for all k, 0 ≤ k ≤ n − 1,
with pD(x) = pM (x) − pC′C(x) = pM (x) − α2(1 − xt)(1 − xn−t). Since
pM (ωk) = 1 − pA(ωk)pA(ω−k), we have pM (ωk) > 0 except if (n/t)|k by
the Lemma, i.e., when pC′C(ωk) = 0. Therefore, we can choose α to be the
positive square root of

min
k:0≤k≤n−1

n
t
6 |k

pM (ωk)
2 − ωtk − ω−tk

.

Note that the denominators are positive and real. This will guarantee that
||Cxk|| → 0 as k → ∞ with

||Cx||2 = α2
n−1∑

i=0

|xi − xi+t|2.

The conclusion immediately follows.
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We have extracted all that we can from our pseudo-invariant. No
doubt, the observant reader has already concluded that the sets Sj are ei-
ther recurrent classes, or cyclic sections of recurrent classes. But which?
We know that all of the numbers at positions in Sj asymptotically be-
have the same, but we don’t know whether they all reach a limit or are
asymptotically periodic. As in the proof of Theorem 6, it is when the in-
variance of the averages (on the Sjs in this case) is coupled with the results
of the pseudo-invariant that the asymptotic behavior on each subset Sj is
revealed, and each can be identified as a recurrent class or a cyclic section.
This is the task of the next theorem.

THEOREM 8. For any circulant stochastic matrix A and any initial
configuration x0, let u and g be defined as above. Then, the Markov chain
with transition matrix A consists of gcd(n, g, u) recurrent classes, each with
period p = gcd(n,g)

gcd(n,g,u) . In other words, the n positions around the circle can
be partitioned into gcd(n, g, u) rotationally symmetric subsets where, on
each subset either the coordinates of xk converge (if p = 1) or asymptoti-
cally cycle through values with (possibly non-fundamental) period p.

Proof. The key to the proof is to recognize that in applying the averaging
scheme for the k+1th time, the coordinates of xk+1 in positions from Sj are
calculated using values from xk in positions from Sj+u exclusively (where
the subscripts of S are taken mod gcd(n, g)). For instance, if i ∈ Sj then
i ≡ j (mod gcd(n, g)). We calculate b

(k+1)
i =

∑
l∈L′ cl+ub

(k)
i+l+u and note

that for each l ∈ L′, the subscript i + l + u ≡ j + u (mod gcd(n, g)), so
position i + l + u ∈ Sj+u.

Now, if u ≡ 0 (mod gcd(n, g)) then Sj = Sj+u, and all of the Sjs
are recurrent classes. The average of the numbers at positions from Sj are
preserved after each multiplication by A, so by the previous theorem, xk

converges and on each recurrent class Sj , its limiting value is the average of
the coordinates of x0 from Sj . (Note that in this case, p = gcd(n,g)

gcd(n,g,u) = 1.)

On the other hand, if u 6≡ 0 (mod gcd(n, g)) then Sj 6= Sj+u

and it will have taken p = gcd(n,g)
gcd(n,g,u) > 1 multiplications by A to get

Sj = Sj+pu since gcd(n,g)
gcd(n,g,u) is the smallest positive value of p satisfying

pu ≡ 0 (mod gcd(n, g)). Thus, each of the Sjs is a cyclic section, with p

cyclic sections in each recurrent class, and gcd(n,g)
p = gcd(n, g, u) recurrent

classes in all. Furthermore, the average of the coordinates of xk+1 in posi-
tions from Sj equals the average of the coordinates of xk in positions from
Sj+u. Thus, again from the previous theorem xkp converges as k → ∞
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to identical values at positions from each Sj equal to the average of the
coordinates of x0 at those same positions.

From Theorem 8 we get a simple asymptotic characterization of the
powers of A.

THEOREM 9. For any circulant stochastic matrix A and any initial
configuration x0, let u and g be defined as above. Then, through a permuta-
tion matrix P , determined by A, the powers of A asymptotically take on the
simple form PAkP ′ ≈ gcd(n,g)

n Igcd(n,g,u) ⊗ Ek
p ⊗ Jn/p as k → ∞, where the

subscripts indicate the dimensions of the matrices. In terms of the entries
of Ak,

a
(k)
ij ≈

{
gcd(n,g)

n , if j − i ≡ ku (mod gcd(n, g)),
0, otherwise,

as k → ∞.

Proof. The proof of this theorem amounts to no more than reinter-
preting in matrix form the content of Theorem 8, by reordering of the
rows and columns of A according to recurrent classes and cyclic sec-
tions within each class. First, for j = 0, 1, . . . , t − 1, t = gcd(n, g),
order each cyclic section Sj =

(
j, j + t, . . . , j +

(
n
t − 1

)
t
)
, in increasing

order. Next, for i = 0, 1, . . ., gcd(n, g, u) − 1, order each recurrent class
Ri = SiˆSi+uˆ . . .ˆSi+(p−1)u by concatenating its cyclic sections in the
order listed, noting that multiplication by A takes values from the positions
in each section to give the values in the positions from the immediately pre-
ceding section (and from Si to Si+(p−1)u). Then, the concatenation of the
recurrent classes R0ˆR1ˆ · · ·ˆRgcd(n,g,u)−1 is a reordering of the numbers
0 through n − 1.

Finally, we choose the permutation matrix P that makes P (0, 1, . . . , n−
1)′ = (R0ˆR1ˆ · · ·ˆ Rgcd(n,g,u)−1)′. Then, PAkP ′ ≈ gcd(n,g)

n Igcd(n,g,u) ⊗
Ek ⊗ J as k → ∞, where I is gcd(n, g, u)× gcd(n, g, u) due to the number
of recurrent classes, E is p×p from the period of each class, and J is n

p × n
p

from the number of states in each cyclic section.

We coax out the limiting values of a
(k)
ij by noting that the ith com-

ponent of xk = Ak(0, . . . , 0, bj = 1, 0, . . . , 0)′ is nonzero, if and only if
i ∈ Sj−ku (where the subscript is taken mod gcd(n, g)), and approaches
gcd(n, g)/n (one averaged over the n/ gcd(n, g) positions from Sj−ku), as
k → ∞.
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The last portion of the theorem generalizes Theorem 2 of [8] to include
the periodic case.

REMARK 1. Here are some notable examples and features of Theo-
rem 8. If g = 1 then A is irreducible and aperiodic (cf. Problem 1 with
u = 0, g = 1) resulting in a limit vector with equal coordinates. In Prob-
lem 3, we get u = 1, g = n − 2 which yields gcd(n, g, u) = 1 limiting cycle
of period p = 2 if n is even and p = 1 otherwise. If u = 0 or u = g > 0 then
p = 1, i.e., A is aperiodic, and thus we have gcd(n, g, u) = gcd(n, g) class
specific limit vectors, each vector having equal coordinates. If n is even
(or odd) and g = 2, for instance if L is {2, 4, . . .}, {0, 2, 4, . . .}, or {0, 2}
(cf. Problem 2), then we have two (or one) limit vectors. For example, in
Problem 2 with n even, we get u = 0, g = 2, t = 2, gcd(n, g, u) = 2 classes
with period p = gcd(n, g)/ gcd(n, g, u) = 1. Thus, we have two separate
classes and xk converges to (E, O, E, O, . . ., E, O). Note that a shift of
u, 0 < u < gcd(n, g) will make room for several dominant eigenvalues (of
absolute value one). If u = 0 then gcd(n, g, u) > 1 has the same effect.
In summary, the multiplicity of eigenvalue λ = 1 is the number of recur-
rent classes of the Markov chain, and the number of the unit magnitude
eigenvalues, evenly distributed around the unit circle, is the period of each
recurrent class (as is true of any recurrent class (with the possibility of
different periods) of any general Markov chain).

REMARK 2. Theorem 8 shows that any averaging scheme involving
at least two consecutive terms will have the same limit as the limit in
Problem 1.

8. Other averaging schemes – general problem. While we have been
able to characterize the limiting behavior of any averaging scheme around
the circle, with regard to fractionizing, the averaging scheme explored in
Section 4 seems to us to be unusually amenable to thorough analysis. In
this section, we only touch upon the problem of first fractionizing for two
other averaging schemes as appetizers and heartily invite the further ex-
ploration of these and any other averaging scheme that might strike the
reader’s fancy.

Equal weights

Let us take A = circ[c0 = 1/N, . . . , cN−1 = 1/N, 0, . . . , 0] with auxiliary
polynomial pA(x) = 1

N (1 + x + . . . + xN−1) and

pAk(x) ≡ (pA(x))k ≡ 1
Nk

(
1 − xN

1 − x

)k

mod (xn − 1).
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To obtain, say, b
(k)
0 we take the coefficient of xj in pAk(x), and get that the

relative contribution of bj , 0 ≤ j ≤ min{k, n − 1},

(8.1)
1

Nk

( ∑

t≡j mod n

k∑

i=0

(−1)i

(
k

i

)(
k − 1 + t − iN

t − iN

))
.

This simplifies to 1
Nk

∑
t≡j mod n

(
k
t

)
with N = 2 in Problem 1 (see identity

(2.1)). The case with N > 2 seems a lot more involved than that of N = 2
because the number of binomial terms in (8.1) increased from one to k + 1.
The problem with only two but not necessarily equal weights seems more
manageable.

Two unequal weights

Here we discuss only the following innocent looking case. Let n be an
odd prime and set q = min0≤j≤n−1 ρn(bj) where ρn(a) denotes the high-
est power of n dividing the integer a. If A = circ[c0 = (n − 1)/n, c1 =
1/n, 0, . . ., 0] with pA(x) = 1

n(n − 1 + x) then

pAk(x) ≡ (pA(x))k ≡ 1
nk

k∑

t=0

(
k

t

)
(n − 1)k−txt mod (xn − 1).

This yields b
(k)
l =

∑min{k,n−1}
j=0

∑
t≡j mod n

(
k
t

)
(n − 1)k−tbl+j/nk and thus

for all k ≤ q, with some effort
(8.2)

b
(k)
l ≡

min{k,n−1}∑

j=0

(n − 1)k−j(−1)j

( ∑

t≡j mod n

(
k

t

)
(−1)t

)
bl+j

nk
(mod n2),

by binomial expansion.

We can apply Theorem 3 of [5], i.e., for all j, 0 ≤ j ≤ n − 1,

ρn(
∑

t≡j mod n

(
k
t

)
(−1)t) ≥ b k−1

n−1
c to increase ρn(b(k)

l ) by increasing k in
(8.2). To get a lower bound on the number of steps it takes before frac-
tionizing we can choose the maximum k so that 0 ≤ q − k + b k−1

n−1c which
yields the lower bound q + b q−1

n−2
c for the number of steps it takes before

fractionizing.
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