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Abstract
Our main goal is to effectively calculate the p-ary digits of certain Stirling numbers
of the second kind. We base our study on an observation regarding these numbers:
as m increases, more and more p-adic digits match in S(i(p− 1)pm, k) with integer
i ≥ 1.

1. Introduction

Let n and k be positive integers, p be a prime, dp(k) and νp(k) denote the sum of
digits in the base p representation of k and the highest power of p dividing k, i.e., the
p-adic order of k, respectively. For the rational n/k we set νp(n/k) = νp(n)−νp(k).
In 1808, Legendre showed

Lemma 1. ([2]) For any positive integer k, we have νp(k!) = (k − dp(k))/(p− 1).

We define the 2-free part of k! (or unit factor of k! with respect to 2), bk, as

k! = 2k−d2(k)bk,

or more explicitly,
bk =

�

3≤p≤k
p prime

p
k−dp(k)

p−1 .

In general, bk is the p-free part of k! (or unit factor of k! with respect to p), i.e.,
k! = p

k−dp(k)
p−1 bk with

bk =
�

2≤p�≤k
p� �=p and prime

p�
k−d�p(k)

p�−1 .

We have the identity (cf. [1]) for the Stirling numbers of the second kind

S(n, k) =
1
k!

k�

j=0

�
k

j

�
(−1)j(k − j)n.
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Our main goal is to effectively calculate the p-ary digits of certain Stirling numbers
of the second kind. For example, if k = 2 then S(m, 2) = 2m−1 − 1,m ≥ 2; thus,
the binary representation consists of all ones. We try to find similar properties for
other values of k. We base our study on an observation (cf. [6]) regarding these
numbers: as m increases, more and more p-adic digits match in S(i(p − 1)pm, k)
with integer i ≥ 1.

We claim the main results (cf. Theorems 2, 4, and 5) in Section 2, and illustrate
and prove them in Sections 3-5. We discuss the case with p = 2 in Sections 3 and 4
and derive additional results (cf. Lemmas 8 and 9). A general approach is presented
in Section 4. Options and limitations (cf. Theorems 12-18 based on [4] and [6]) for
other primes are discussed in Section 5. Two examples are provided to demonstrate
the cases of 2-adic and ternary digits.

2. Main Results

First, we deal with the binary digits and obtain

Theorem 2. With the above introduced notation,

S(2mi, k) ≡ 1
k!

k�

j=0
k−j odd

�
k

j

�
(−1)j(k − j)2

mi

≡ 2d2(k)−1(−1)k−1b2m−1
k mod 2m+2−k+d2(k) (2.1)

for m + 2 ≥ k − d2(k), m ≥ 2, and i ≥ 1.

Remark 3. Recall that (2.1) implies that ν2(S(2mi, k)) = d2(k)− 1 if d2(k)− 1 <
m + 2− k + d2(k), i.e., m ≥ k − 2, cf. [5] and [7] for the generalized version.

We make the calculation more explicit in Theorem 4 and generalize it for p = 3
in Theorem 5, and in Theorems 12 and 17, in general.

We set uk ≡ bk ≡ b−1
k mod 4 to be the least positive residue of the 2-free part bk

of k! modulo 4 which is the same as that of its inverse modulo 4,

ck =

�
−1, if uk = 3,
+1, if uk = 1,

and

ak =

�
� bk

4 �, if uk = 3,
� bk

4 � − 1, if uk = 1,
(2.2)

which yields that bk = 4ak + ck. We end up with the following theorem that gives
S(2mi, k) explicitly, modulo a high power of two, and in terms of k, m, and r (r ≥ 0
integer).
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Theorem 4. With the above introduced notation, for k ≥ 3 we have

S(2mi, k) ≡ 2d2(k)−1(−1)k−1ck

r�

j=0

(−4ckak)j mod 2e(m,k,r) (2.3)

with e(m,k, r) = min{m + 2− k + d2(k), (r + 1)(2 + ν2(ak)) + d2(k)− 1}.

With p = 3, we set uk ≡ bk ≡ b−1
k mod p to be the least positive residue of the

p-free part bk of k! modulo p which is the same that of its inverse modulo p,

ck =

�
−1, if uk = p− 1,
+1, if uk = 1,

and

ak =

�
� bk

p �, if uk = p− 1,
� bk

p � − 1, if uk = 1,

which yields that bk = p · ak + ck. We get that

Theorem 5. For p = 3 and k ≡ 2 or 4 (mod 6), we have

S(i(p− 1)pm, k) ≡ p
dp(k)
p−1 −1(−1)

kp
p−1 ck

r�

j=0

(−pckak)j mod pe(m,k,r) (2.4)

where

e(m,k, r) =min{m + 1− k − dp(k)
p− 1

,m + 1 + νp(ak) +
dp(k)
p− 1

− 1,

(r + 1)(1 + νp(ak)) +
dp(k)
p− 1

− 1}.

3. Proof of Theorem 2

We need a well-known theorem and two lemmas.

Theorem 6. (Kummer, 1852) The power of a prime p that divides the binomial

coefficient
�n

k

�
is given by the number of carries when we add k and n−k in base p.

The first lemma is an improvement of the Fermat–Euler Theorem which claims
only that t2

m+1 ≡ 1 mod 2m+2 for p = 2,m ≥ 0, and t ≥ 1 odd.

Lemma 7. (Lemma 3 in [3]) For any integer m ≥ 1 and any odd integer t,

t2
m

≡ 1 mod 2m+2.
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This lemma can be proven by induction on m and further generalized to higher
2-power moduli (cf. [3]). The following lemma is an improvement of the well-known
congruence

�pt−1
j

�
≡ (−1)j mod p, 0 ≤ j ≤ pt − 1 for prime p and t ≥ 1 integer.

Lemma 8. If p is a prime, (a, p) = 1, t ≥ 1, and 1 ≤ j ≤ pt − 1, then

νp

��
apt

j

��
= t− νp(j) (3.1)

and �
apt − 1

j

�
≡ (−1)j mod pt−�logp j�.

Proof. Clearly, identity (3.1) is true by Theorem 6. Using the fact that
�apt−1

0

�
= 1

and �
apt

j

�
=

�
apt − 1
j − 1

�
+

�
apt − 1

j

�
,

it implies that �
apt − 1

j

�
≡ (−1)j mod pt−�logp j�

by step-by-step increasing j from j = 1 on.

Proof of Theorem 2. The proof relies on the fact that terms with k − j even will
not contribute to the congruence since 2mi ≥ m + 2 as m ≥ 2, and on Lemma 7,
since

1
k!

k�

j=0
k−j odd

�
k

j

�
(−1)j(k − j)2

mi ≡ 1
k!

(−1)k−1
k�

j=0
k−j odd

�
k

j

�

≡ (−1)k−12k−1

2k−d2(k)bk
mod 2m+2−k+d2(k).

Note that since bk is odd, b−1
k ≡ b2m−1

k mod 2m+2 by Lemma 7.

We note that it is easy to see that

S(n, 5) =
1
24

(5n−1 − 4n + 2 · 3n − 2n+1 + 1) (3.2)

holds which yields
S(2mi, 5) ≡ 2 · 152m−1 mod 2m−1 (3.3)

for i,m ≥ 1. Indeed, we have

3−1 ≡ 32m−1 ≡ 32mi−1 mod 2m+2,

5−1 ≡ 52m−1 ≡ 52mi−1 mod 2m+2
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and

S(2mi, 5) ≡ 1
8 · 3

1
5
(52mi + 10 · 32mi + 5) ≡ 1

15
1
8
16 ≡ 2 · 152m−1 mod 2m−1

by identity (3.2) and Lemma 7, if m ≥ 1 and i ≥ 1, with direct calculations and
without using Theorem 2. Moreover, we get

Lemma 9. For any integer r ≥ 0 and i,m ≥ 1, we have

S(2mi, 5) ≡ −2
r�

j=0

24j mod 2min{m−1,4r+5}. (3.4)

Proof of Lemma 9. In fact, the statement holds if 2mi < 5. Otherwise, we rewrite

152m−1 = (42 − 1)2
m−1 = −1 +

�
2m − 1

1

�
42 −

�
2m − 1

2

�
44 + · · ·

≡ −
r�

j=0

24j mod 2min{m+4,4r+4}

by Lemma 8, which already implies (3.4) by (3.3) since m+2−k+d2(k) = m−1.

The congruence (3.4) guarantees that the binary representation of S(2mi, 5) ends
in (0111)∗011110 if m is large enough. (With d being any finite word formed over
the alphabet {0, 1}, (d)∗ denotes any finite number t, t ≥ 0, of copies of the “word”
d.) If r = 0 and m ≥ 6 then we have

S(2mi, 5) ≡ 30 mod 32.

If r ≥ (m− 6)/4 then the congruence (3.4) turns into

S(2mi, 5) ≡ −2
r�

j=0

24j mod 2m−1,

and the terms beyond j = �(m− 6)/4� effectively do not contribute to the sum.

4. 2-adic Digits: A General Approach for Effective Calculation and the
Proof of Theorem 4

If k = 5 then we get d2(5) = 2, b5 = 15 and S(2mi, 5) satisfies congruence (3.3) by
Theorem 2. For larger values of k, we use (4.1) below since we do not need the
exact value of bk. In fact, to effectively calculate S(2mi, k) modulo a large 2-power,
it suffices to use bk modulo that 2-power. It can be calculated by the congruence

bk =
k!

p
�

j≥1�
k

pj �
≡ δ

�
j≥q�

k
pj �

�

j≥0

(Kj !)p mod pq, (4.1)



INTEGERS: 13 (2013) 6

with δ = δ(pq) = −1 except if p = 2, q ≥ 3 when δ = 1, Kj is the least positive
residue of �k/pj� (mod pq), 0 ≤ j ≤ d, if pd ≤ k < pd+1, and

(K!)p =
K!

p�
K
p ��K

p �!

is the product of those positive integers not exceeding K that are not divisible by
p; cf. [2, Proposition 1, p8]. With p = 2, we have δ = 1 if q is large enough. This
implies that

bk ≡
�

j≥0

(Kj !)2 mod 2q.

Now we can gain a more in-depth look at the binary digits of S(2mi, k) by
evaluating the right-hand side of (2.1) more effectively via Theorem 4.

Proof of Theorem 4. In a similar fashion to the case with k = 5 and depending
upon uk (mod 4), we rewrite

b2m−1
k = (4ak + ck)2

m−1 = ck +
�

2m − 1
1

�
(4ak)c2

k +
�

2m − 1
2

�
(4ak)2(ck)3 + · · ·

≡ ck

r�

j=0

(−4akck)j mod 2min{m+2+ν2(ak),(r+1)(2+ν2(ak))}

by Lemma 8, which already implies (2.3) by Theorem 2 since min{m + 2 − k +
d2(k),m + 2 + ν2(ak) + d2(k)− 1, (r + 1)(2 + ν2(ak)) + d2(k)− 1} = min{m + 2−
k + d2(k), (r + 1)(2 + ν2(ak)) + d2(k)− 1}.

Example 10. For k = 3, 4, 5, and 7, we get b3 = b4 = 3, b5 = 15, b7 = 315, uk = 3,
ck = −1, a3 = a4 = 1, a5 = 4, and a7 = 79, which yield that

S(2mi, 3) ≡ −2
r�

j=0

4j mod 2min{m+1,2(r+1)+1},

S(2mi, 4) ≡
r�

j=0

4j mod 2min{m−1,2(r+1)},

S(2mi, 5) ≡ −2
r�

j=0

16j mod 2min{m−1,4(r+1)+1},

in agreement with (3.4), and

S(2mi, 7) ≡ −22
r�

j=0

316j mod 2min{m−2,2(r+1)+2}.
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On the other hand, if k = 6 then b6 = 45, u6 = 1, c6 = 1, a6 = 11, and

S(2mi, 6) ≡ −22
r�

j=0

(−44)j mod 2min{m−2,2(r+1)+1}.

Remark 11. Note that the “best use” of the congruence (2.3) comes with values
of ak that are powers of two, e.g., if k = 3, 4, 5, etc. It will be interesting to see the
general solution to this problem, i.e., find all k so that ak, which is derived from
the 2-free part bk of k! by (2.2), is a power of two. Indeed, beyond the small cases,
we look for any k ≥ 4, for which k! is the difference or sum of two powers of two
(depending on the sign of ck), or equivalently, whose binary representation is of
the form 1(0)∗1(0)∗0 or 1(1)∗(0)∗0. This follows by the identity k! = 2k−d2(k)bk =
2k−d2(k)(4ak + ck). (Of course, for k ≥ 2, we get an even k! so it must end with a
binary zero.)

5. Other primes

As m increases, more and more p-adic digits match in S(i(p − 1)pm, k). However,
to effectively calculate these matching digits we need another approach. We rely on
papers [4] and [6]. We need the following combination of Lemma 5 and Theorem 3
of [4]. This helps in generalizing Theorem 4 for odd primes if k is divisible by p−1.

Theorem 12. ([4]) For any odd prime p, integer t, n = i(p − 1)pm, 1 ≤ k ≤ n,

and m > k
p−1 − 2, we have

(−1)k+1k!S(n, k) ≡
�

p|i

�
k

i

�
(−1)i mod pm+1 (5.1)

and

�

i≡t mod p

�
k

i

�
(−1)i ≡

�
(−1)

k
p−1−1p

k
p−1−1 mod p

k
p−1 , if k is divisible by p− 1,

0 mod p�
k

p−1�, otherwise.

(5.2)

Therefore, if k is divisible by p− 1 then

S(n, k) ≡ p
dp(k)
p−1 −1(−1)

kp
p−1 b−1

k mod pmin{m+1− k−dp(k)
p−1 ,

dp(k)
p−1 }

where bk is the p-free part of k! as defined in the introduction and by the Fermat–
Euler Theorem

b−1
k ≡ b(p−1)pm−1

k mod pm+1.
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Remark 13. Note that the p-adic order of S(i(p − 1)pm, k) does not depend on
i and m. This does not exclude the possibility that by increasing m we can get
more insight into the base p representation of S(i(p − 1)pm, k). Indeed, if p = 2
then (2.1) provides us with the right tool since

�
2|i

�k
i

�
(−1)i = 2k−1, and it leads

to Theorem 4. However, in general, increasing m does not help in getting more
p-ary digits in a computationally effective way, for (5.2) cannot be significantly
improved; although, according to Theorem 17, we get more and more matching
digits in S(i(p− 1)pm, k) and S(i(p− 1)pm+1, k) (starting with the least significant
bit). We can avoid the use of (5.2) if a closed form exists for

�
p|i

�k
i

�
(−1)i in (5.1),

at least for some k, e.g., if p = 3 or 5.

In fact, for example, if k is even and 3 � | k, we get that
�

3|i
�k

i

�
(−1)i =

(−1)k/2+13k/2−1. Theorem 5 provides us with a tool to calculate the ternary digits
of S(i(p− 1)pm, k) if k ≡ 2 or 4 (mod 6). Its proof is a straightforward generaliza-
tion of that of Theorem 4. We demonstrate its use in the next example.

Example 14. If p = 3 then uk ≡ bk ≡ b−1
k mod 3 is the least positive residue of

the 3-free part bk of k! modulo 3 which is the same as that of its inverse modulo 3.
For instance, if k = 4 we get then b4 = 8, uk = 2, c4 = −1 and

a4 =
�

b4

3

�
= 3,

which yields that b4 = 9− 1. We obtain that

S(2i · 3m, 4) ≡ −
r�

j=0

32j mod 3e(m,4,r) (5.3)

with

e(m, 4, r) =min{m + 1− 4− d3(4)
2

,m + 1 + ν3(3) +
d3(4)

2
− 1,

(r + 1)(1 + ν3(3)) +
d3(4)

2
− 1}

=min{m, 2(r + 1)}.

This implies that S(2i · 3m, 4) ends in (12)∗122 in base 3.

Remark 15. Since k! = 3
k−d3(k)

2 bk = 3
k−d3(k)

2 (3ak + ck) we get the “best use” of
Theorem 5 when ak is a power of three, i.e., when k! is the difference or sum of two
powers of three. For example, in Example 14, 4! = 24 = 33 − 3 leads to (5.3).

Remark 16. In a similar fashion to the case with p = 3, if p = 5 then we can
use the fact that

�
5|i

�k
i

�
(−1)i can be expressed explicitly in terms of Fibonacci or

Lucas numbers, with a formula depending on k modulo 20 (cf. [4]).
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The idea of getting more p-ary digits of S(i(p− 1)pm, k) by increasing m is well
supported and the rate of increase is made effective by the following theorem which
is based on Theorems 11 and 14 of [6]. This theorem can be used in getting the
digits successively although not in a direct fashion as in (2.3), (2.4), and (5.3).

Theorem 17. Let p ≥ 2 be a prime, c, n, k ∈ N with 1 ≤ k ≤ pn and (c, p) = 1,
and u be a nonnegative integer, then

νp(S(cpn+1 + u, k)− S(cpn + u, k)) ≥ n− �logp k�+ 2.

It was also conjectured in Conjecture 2 in [6] that for n, k ∈ N, 3 ≤ k ≤ 2n, and
c ≥ 1 odd integer, we have

ν2(S(c2n+1, k)− S(c2n, k)) = n + 1− f(k)

for some function f(k) which is independent of n (for any sufficiently large n). In
fact, for small values of k, numerical experimentation suggests that

f(k) = 1 + �log2 k� − d2(k)− γ(k),

with γ(4) = 2 and otherwise it is zero except if k is a power of two or one less, in
which cases γ(k) = 1. This would imply that f(k) ≥ 0, cf. [6].

In connection with Theorem 12, we note that if k is divisible by p− 1 then k/p
is not an odd integer. On the other hand, if k/p is an odd integer then we observe
a behavior which is somewhat different from that of Theorem 12.

Theorem 18. (Theorem 2 in [4]) For any odd prime p, if k/p is an odd integer

then νp(k!S(i(p− 1)pm, k)) > m.

Acknowledgment The author wishes to thank Gregory P. Tollisen and the referee
for helpful comments that improved the presentation of the paper.
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