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ABSTRACT

Kolmogorov studied the problem of whether a function of the parameter p of the Bernoulli
distribution Bernoulli[p] has an unbiased estimator based on a sample X1, X2, . . . , Xn

of size n and proved that exactly the polynomial functions of degree at most n can be
estimated. For the geometric distribution Geometric[p], we prove that exactly the functions
that are analytic at p = 1 have unbiased estimators and present the best estimators.
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1 Introduction

Typically, to estimate certain unknown parameters, we search for unbiased estimators with
small mean squared error. Sometimes a biased estimator may have a smaller mean squared
error and thus, suggesting a search for “best” estimators among both biased and unbiased
estimators. On the other hand, the study of unbiased estimators of a parameter or functions of
the parameter has lead to many important results (e.g., Cramér-Rao inequality, Rao-Blackwell
and Lehmann-Scheffé theorems) that help in comparing such estimators and constructing best
unbiased estimators. For this reason, unbiased estimators are often favored over biased ones.
(Kolmogorov, 1950) studied the problem of whether a function g(p) of the parameter p of the
Bernoulli distribution Bernoulli[p] has an unbiased estimator, i.e., g(p) is estimable based on
a sample X1, X2, . . . , Xn of size n. He proved that exactly the polynomial functions of degree
at most n can be estimated. With the notation (x)k = x(x − 1) . . . (x − k + 1) and (x)k = 0 if
x < k for the falling factorial and S =

∑n
i=1Xi for the sample sum, the statistic

(S)k
(n)k

=

(
S
k

)(
n
k

) (1.1)

provides us with an unbiased estimator of pk, 0 ≤ k ≤ n (Voinov and Nikulin, 1993, Appendix
A24., No. 13), in fact, the only unbiased estimator for pk in the case of the Bernoulli distribution.



In a similar fashion, we get that
n∑
k=0

ak
(S)k
(n)k

is the only unbiased, hence the best or minimum variance unbiased estimator (MVUE) of∑n
k=0 akp

k (Voinov and Nikulin, 1993, Appendix A24., No. 14). (Note that most MVUEs of this
note can be found in (Voinov and Nikulin, 1993).) A simple application of Theorem 2.1 below
immediately provides the above MVUE and also guarantees that no other function which is
analytic at p = 0 is estimable.
In this note, we discuss the similar problem of estimating functions of the parameter p of the
geometric distribution Geometric[p] which is defined as the probability distribution P (X = k) =
p(1 − p)k−1, k = 1, 2, . . . , of the number X of Bernoulli trials needed to get the first success.
Sometimes this distribution is referred to as the shifted geometric distribution. The geometric
distribution is a common discrete distribution in modeling the life time of a device in reliability
theory. Typically, we search for the maximum likelihood estimator and MVUE for the reliability
and failure rate functions, however, for a general function it has not been known if an MVUE let
alone an unbiased estimator exists. In Section 2 we answer the question of estimability. In the
last section we outline some applications in which unbiased estimators of some function of the
parameter p are preferable.

2 From estimations by hypergeometric functions to estimations by power se-
ries

For the geometric distribution, different hypergeometric functions of the sample sum can be
used to obtain unbiased estimators of pk,−∞ < k ≤ n− 1. In fact, we have that

E

((S−k−1
n−k−1

)(
S−1
n−1

) ) = pk, (2.1)

see (Voinov and Nikulin, 1993, Appendix A25., Nos. 13 and 16, with θ = 1−p and a translation
in the value of Xi) for 0 ≤ k ≤ n − 1 and (Haldane, 1945) for k = 1 and n ≥ 2. The case with
k ≥ n is covered by the Remark after Theorem 2.2.
A general tool to obtain MVUEs is to apply the Lehmann-Scheffé theorem. After finding an
unbiased estimator T for g(p) and a sufficient and complete estimator S for p, we can use the
Lehmann-Scheffé theorem to obtain the MVUE for g(p). For example, for 0 ≤ k ≤ n − 1, we
set g(p) = pk, the indicator variable T = IX1X2...Xk=1, and S to be the sample sum. Then
E(T ) = pk and

E(T |S = N) = P (X1=X2=···=Xk=1,
∑n

i=1Xi=N)
P (

∑n
i=1Xi=N)

=
pkP (

∑n
i=k+1Xi=N−k)

P (
∑n

i=1Xi=N)

=
pk(N−k−1

n−k−1)pn−k(1−p)N−n

(N−1
n−1)pn(1−p)N−n

= (N−k−1
n−k−1)
(N−1

n−1)
,

that is,

E(T |S) = (S−k−1
n−k−1)
(S−1

n−1)
.

Note, however, that unless there is a trivial candidate, finding an unbiased estimator T for a
general distribution might be a difficult task, and this is the focus of the monograph by (Voinov



and Nikulin, 1993). In order to prove (2.1) for 1/pk, k ≥ 0, we observe that
(
S+k−1

k

)
/
(
n+k−1

k

)
=(

S+k−1
n+k−1

)
/
(
S−1
n−1

)
, and

E

(
(S+k−1

k )
(n+k−1

k )

)
=
∑∞

N=n

∏k−1
i=0

N+k−1−i
n+k−1−i

(
N−1
n−1

)
pn(1− p)N−n

=
∑∞

N=n

(
N+k−1
n+k−1

)
pn(1− p)N−n

=
∑∞

N=0

(
N+n+k−1

N

)
pn(1− p)N = pn

(1−(1−p))n+k = 1
pk .

Again, this statistic is a function of the sufficient and complete statistic S for p; thus, it is MVUE
for 1/pk. One might wonder if 1/(1− p) has an MVUE and hopelessly sort through some can-
didates, based on the ad hoc applications of hypergeometric identities, until recognizing that
the answer relies on a powerful general result of (Patil, 1963, Theorem 4) on the estimability of
the function g(p) and its generalizations, see (Voinov and Nikulin, 1993). If an MVUE exist for
a function of the parameter then we say that the function is MVU estimable. Our main result
states that exactly the functions that are analytic at p = 1 are MVU (and simply) estimable,
and it is given in Theorem 2.8. Let W (d(θ)) denote the index set {k | ak 6= 0} of the nonzero
coefficients of the power series d(θ) =

∑∞
k=0 akθ

k around 0. We have

Theorem 2.1 (Patil). Let X follow the generalized power series distribution (GPSD) given by
P (X = x) = p(x; θ) = a(x) θx/f(θ), x = 0, 1, 2 . . . , with f(θ) =

∑∞
x=0 a(x)θ

x, and g(θ) be a
function of θ such that g(θ)fn(θ), with fn(θ) = (f(θ))n, admits a powers series expansion in θ.
The necessary and sufficient condition for g(θ) to be MVU estimable on the basis of a random
sample of size n from this GPSD is that W (g(θ)fn(θ)) ⊆ W (fn(θ)). Also, whenever it exists,
the MVUE for g(θ) is given by c(z, n)/b(z, n) for z ∈ W(g(θ)fn(θ)) and it is 0, otherwise, where
c(z, n) is the coefficient of θz in the expansion of g(θ)fn(θ), z is the sample sum, and b(z, n) is
the coefficient of θz in fn(θ) =

∑
b(z, n)θz.

Now we can derive the general solution for the geometric distribution.

Theorem 2.2. Let h(θ) be an arbitrary function such that h(θ)( θ
1−θ )

n admits a power series
expansion in θ and assume that the function g(p) can be written as the function h of 1 − p,
i.e., g(p) = h(θ) by using the substitution θ = 1 − p. Then g(p) is estimable on the basis
of the sample X1, X2, . . . , Xn∼ Geometric[p] exactly if g(p) is analytic about 1. With g(p) =∑∞

k=0 ak(1− p)k, the MVUE for g(p) is

1(
S−1
n−1

) ∞∑
k=0

ak

(
S − k − 1
n− 1

)
=

1(
S−1
n−1

) S−n∑
k=0

ak

(
S − k − 1
n− 1

)
. (2.2)

Proof. According to Theorem 2.1, for the geometric distribution we have a(x) = 1 for x ≥ 1,
θ = 1 − p and f(θ) = (1 − p)/p = θ/(1 − θ). Thus, fn(θ) = (θ/(1− θ))n =

∑∞
k=0

(
n+k−1

k

)
θn+k,

b(z, n) =
(
z−1
n−1

)
, W (fn(θ)) = {n, n+ 1, . . . }, and we want to test whether

W (h(θ)fn(θ)) ⊆ {n, n+ 1, . . . }. (2.3)

Clearly, the relation (2.3) holds if and only if h(θ) is analytic at θ = 0, i.e., if g(p) is analytic at
p = 1.



To obtain the MVUE for g(p) =
∑∞

k=0 ak(1−p)k, we first set g(p) = (1−p)k = θk with any integer
exponent k ≥ 0 and get that h(θ)fn(θ) = θn+k/(1 − θ)n = θn+k

∑∞
t=0

(
n+t−1

t

)
θt, and thus, by

Theorem 2.1 the MVUE is
(
S−k−1
n−1

)
/
(
S−1
n−1

)
if S = z ∈W (h(θ)fn(θ)) = {n+ k, n+ k+1, . . . } and

0, otherwise (which is indirectly incorporated in the first case as the binomial coefficient in the
numerator becomes zero).

Remark. We can easily obtain the relation (2.1) by this theorem. For g(p) = pk, i.e.,
h(θ) = (1 − θ)k with any integer exponent k ≤ n − 1, the MVUE is

(
S−k−1
n−k−1

)
/
(
S−1
n−1

)
for S ≥ n

and thus, S = z ∈ W (h(θ)fn(θ)) = {n, n + 1, . . . }. For g(p) = pk with k ≥ n, we have a
slightly different form. For example, if k = n then W (h(θ)fn(θ)) = {n} and the MVUE is 1 if
S = n and 0, otherwise. In particular, if k = n = 1 then, as it can be easily seen, the only
unbiased estimator (thus MVUE) of p = 1 − θ is 1 if S = 1 and 0, otherwise. In general, if
k = n + m,m ≥ 0, then W (h(θ)fn(θ)) = {n, n + 1, . . . , n + m}, and we get that the MVUE of
pn+m is

(
m
S−n

)
(−1)S−n/

(
S−1
n−1

)
if S ≤ n+m = k.

We note that a GPSD is of exponential type and thus, according to the factorization theorem,
the sample sum is a complete sufficient statistic for θ. By Theorem 2.2 we can conclude that
g(p) = 1/(1 − p) = 1/θ = h(θ) is not MVU (and in the case of a GPSD, simply not) estimable
and W (h(θ)fn(θ)) = {n − 1, n, . . . }. The assumption on h(θ)( θ

1−θ )
n restricts the applicability

of Theorem 2.2, however, Corollary 2.3 still easily follows. Although the above result does not
seem to appear in the literature, we mention that (Patil, 1963) observed that h(θ) = 1/f(θ) is
MVU estimable if and only if 0 ∈W (f(θ)). Here we have f(θ) = θ/(1−θ); thus, h(θ) = −1+1/θ,
i.e., 1/(1− p) is not MVU estimable.

Corollary 2.3. Assume that the meromorphic function g(p) has a pole of order n or less at
p = 1. Then g(p) is not estimable on the basis of a sample of size n from the distribution
Geometric[p].

We note an obvious lemma and its consequence, Corollary 2.5 which covers the higher order
poles, too.

Lemma 2.4. If g(p) is estimable for a sample of size n then it is estimable for every sample
size exceeding n.

Corollary 2.5. Assume that the meromorphic function g(p) has a pole of any order k ≥ 1 at
p = 1. Then in the case of the distribution Geometric[p], g(p) is not estimable for any sample
size.

Proof. For sample size n, the case with 1 ≤ k ≤ n is taken care of by Corollary 2.3 so assume
that k > n and that g(p) is estimable. By Lemma 2.4, g(p) is also estimable based on the larger
sample size k. However, by Corollary 2.3 it is not possible, and we have a contradiction.

A generalization of Theorem 2.1 for modified power series distributions appears in (Voinov and
Nikulin, 1993, p. 210 (see p. 221, too)) that we restate here for GPSDs.

Theorem 2.6. Let X follow the GPSD given by P (X = x) = p(x; θ) = a(x) θx/f(θ), x =
0, 1, 2 . . . , with f(θ) =

∑∞
x=0 a(x)θ

x and fn(θ) = (f(θ))n. The necessary and sufficient condi-
tion for g(θ) to be MVU estimable on the basis of a random sample of size n from this GPSD



is that g(θ)fn(θ) admits a powers series expansion in θ and W (g(θ)fn(θ)) ⊆ W (fn(θ)). Also,
whenever it exists, the MVUE for g(θ) is given by c(z, n)/b(z, n) for z ∈ W(g(θ)fn(θ)) and it is
0, otherwise, where c(z, n) is the coefficient of θz in the expansion of g(θ)fn(θ), z is the sample
sum, and b(z, n) is the coefficient of θz in fn(θ) =

∑
b(z, n)θz.

It follows in general, that a necessary condition for g(θ) to be MVU estimable is that it is analytic
at θ = 0. This leads to the generalization of Corollary 2.5.

Corollary 2.7. Let g(p) = 1/(1 − p)α be with any real α > 0. In the case of the distribution
Geometric[p], g(p) is not estimable for any sample size.

We get our main result in

Theorem 2.8. Regardless of the sample size, the real function g(p) is estimable on the basis
of a sample from the distribution Geometric[p] exactly if g(p) is analytic at p = 1. The MVUE is
given in (2.2) in Theorem 2.2.

The result of Theorem 2.2 can be generalized to left-truncated geometric distributions with
known or unknown shift parameters. The proof of Theorem 2.2 also suggests Theorem 2.9
which is of independent interest, cf. (Voinov and Nikulin, 1993, Appendix A25., No. 16).

Theorem 2.9. The MVUE for g(p) = pk(1− p)r with k ≤ n− 1 and r ≥ 0 integers is(
S−r−k−1
n−k−1

)(
S−1
n−1

)
if S ≥ n+ r.

3 Applications

An important application, both historically and statistically, of an unbiased estimator for the pa-
rameter g(p) = p of the geometric distribution comes from the estimation of small population
frequencies. (Haldane, 1945) considered the following paradigm. If p is the frequency of some
attribute of a population, q = 1− p, and Xi ∼ Bernoulli[p], i = 1, 2, . . . , n, is the indicator vari-
able of the presence of the attribute in the ith sample from the population, then the standard
deviation of the sample mean S/n is

√
pq/n with S having a binomial distribution with parame-

ters n and p. For small values of p it is unsatisfactory to have an error which is proportional to
√
p.

Haldane opted for a different approach with Xi ∼ Geometric[p] being the number of trials it
takes to observe an occurrence of the attribute. This so called inverse sampling procedure
continues until the nth occurrence, and gives now S a negative binomial distribution with pa-
rameters n and p. As was mentioned in Section 2, the unbiased estimator (n − 1)/(S − 1) for
p can be used, and it has an error which is approximately p

√
q/(n− 2) for any n ≥ 3 provided

n is kept constant, i.e., of order of magnitude p when p is small.
For larger values of p and for practical reasons, one might want to find an estimator which has
approximately constant standard deviation for all possible values of the frequency rate p and
carries information about p so that we can calculate an estimator of p from it. The delta method



(cf. (Oehlert, 1992) and (Schwarz, 2008)) is a suitable choice for such problems and other
problems involving functions of the parameters. Although it provides an improvement over the
standard error of Haldane’s approach in the sense that it will be independent of p, it results
only in an approximately unbiased estimator of some function h(p) of p, to be determined later
in the process, rather than an unbiased estimator of p itself.
Estimating functions of the parameter of the geometric distribution is often required in quality
control where the life time X of a certain component can be modeled by the geometric distri-
bution Geometric[p] provided that measurements are taken in discrete time. It is a common
problem to derive estimators of the reliability and failure (or hazard) rate functions of individual
components in a multi-component series system based on masked system life test data. For
example, (Xie, Gaudoin and Bracquemond, 2002) defines the hazard rate function, in terms
of the reliability function, as − ln(1 − p). According to Theorem 2.2 this function of p does not
have an unbiased estimator.
Another typical application of unbiased estimators of a function of some parameter is when
seeking an unbiased estimator of the distribution function P (X ≤ k) of the random variable
X (cf. (Guenther, 1978)). This problem is related to the estimation of the reliability function
in quality control. In the case of the geometric distribution, this reduces to the estimation of
P (X ≤ k) = 1− P (X > k) = 1− (1− p)k. For example, for k = 2 the MVUE is

1− (S − n)(S − n− 1)
(S − 1)(S − 2)

, if S ≥ n+ 2

(cf. Theorem 2.9) and 1, if S = n or n+1, as given by (2.2) of Theorem 2.2, and it has standard
deviation approximately 2p/

√
n− 2 for any small p. This estimator is preferable over the biased

estimators 1 − (1 − n/S)2 and 1 − (1 − (n − 1)/(S − 1))2, n ≥ 2, constructed by naively sub-
stituting the MLE and the MVUE for p, respectively. In fact, the former one overestimates the
expected value by approximately 2p/(n − 1) while the latter one underestimates it by approxi-
mately p2/(n − 2) with approximate standard deviations 2pn/((n − 1)

√
n− 2) and 2p/

√
n− 2.

Also, the former one is in agreement with (Patil, 1962) in which the amount of bias in the maxi-
mum likelihood estimation (MLE) of a differentiable function of the parameter is determined for
GPSDs. Note that the method of moments leads to the MLE for these distributions.
By Theorem 2.8, we can also construct the MVUE for the moment generating function MX(t)
for any particular value t where it is analytic. In general, this might help in calculating the Cher-
noff bound on tail probabilities. Of course, for the geometric distribution the above approach
directly estimates the tail probabilities.
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