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Abstract— In a typical inventory planning problem with a life
cycle of only one planning period we incur the cost of production
per unit produced, profit per unit sold, loss per unit not sold, and
lost revenue per unit ordered but not matched due to the lack of
availability. The goal is to find the inventory level that maximizes
the expected net profit. Textbooks often use the newsboy problem
to illustrate the inventory management paradigm. The derivation
of the formulas for the optimal level is usually done on an ad
hoc basis, by dull and rote mathematical manipulations, for each
modification of the simple basic model. The only purpose of this
note is to give a simple transparent proof of the fact that quite
surprisingly the lost revenue can be combined with the profit by
reducing the general problem to a well known simplified case with
no lost revenue. The reduction uses an airline analogy and thus,
with some tweaking, it places the proof into a classical revenue
management paradigm. We also provide an alternative derivation
of the optimal solution for the discrete case which integrates the
problem into a much broader class of optimization problems.
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I. INTRODUCTION

The newsboy (or newspaper boy or news-vendor, etc.)
problem is a classical example in inventory management, and
it can be traced back to Edgeworth’s work in 1888. Although
in this note we have no interest in surveying the literature, we
mention that an extensive historical overview is given in [1]],
[2]] and [3]. A popular textbook with a reasonable introductory
coverage of inventory theory can be found in [4].

The newsboy has to make a decision on how many news-
papers to carry. If he stocks up too many copies then he will
be left with unsold publications that have no value at the end
of the day. If he carries too few copies then some customers
will be unsatisfied. The problem’s main goal is to optimize
the expected net profit by finding and setting the appropriate
stock level. The use of expected value is generally justified by
the law of large numbers, cf. [2].

A similar situation arises when managers make decisions
about inventory levels of seasonal goods, such as Christmas
cards that should satisfy the demand in December. Any cards
left over in January have only a small residual value. This
single-period model is also often used in the case of perishable

goods and the fashion and apparel industries. Moreover, there
is a downward trend in the life cycles of products in service
industries and high-tech retail, and it leads to the growing
importance of this model and its extensions as mentioned in
[3].

Another more involved application is airline booking. Hav-
ing empty seats corresponds to having too many newspapers.
On the other hand, if there are passengers at the gate who can’t
get on the plane then that corresponds to too few newspapers.
It is customary to offer a bumping reward to the latter quite
disappointed passengers to compensate for the inconvenience
and as a gesture of goodwill. Sometimes the reward is in the
form of a voucher to be used with the same airline which may
generate future business and thus, reduce the actual loss.

One obvious difference from the newsboy problem is that
the stock level is set by the actual number s of available seats
and therefore, the demand is censored by the number n of
reservations taken. Of course, by setting n we can determine
the optimal s, and if it is not equal to the given s then we
can find the right n. Another potential difference is that since
passengers pay different fares on the same flight, the profit
per passenger may also vary. In the case of nonrefundable
fares, no-shows forfeit the fare and thus, always contribute
to the net profit (besides leaving room for more passengers).
We will ignore these last two possibilities, though interested
readers might consult [3S]], one of the authoritative monographs
on revenue management, or [4, Section 18.8] on overbooking
related issues that are typically more complex than the one
we need here. We note that revenue management systems are
getting increasingly popular in service industries, e.g., hotels,
car rental companies, tour operators, etc.

The only purpose of this note is to give a simple and
transparent proof of the fact that when optimizing the expected
net profit, we can combine two seemingly antipodal factors,
the lost revenue and the profit. This is accomplished by
changing the model with the lost revenue incorporated into the
profit-but only on a theoretical level without changing other
factors, e.g., the demand distribution which might be affected
if we simply increased the profit. In this way the reduction
is achieved by a reasonable change in the model rather than
the customary mathematical derivation which does not seem
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to shed light on the reason why the simplified interpretation
is possible. After the combination (cf. Theorem [[ILT)), we can
reduce the general problem to a well known simplified case
with no lost revenue. We also provide an alternative proof
for the discrete case that shows connections to more general
optimization problems, cf. Problem in Section [ITI]

II. THE ACTUAL PROBLEM

Let X denote the random variable with distribution D and
probability density function f(x) of the demand in certain
units, e.g., dollars.

We address the general case which involves different types
of cost, profit, and losses. In Section we present a uniform
approach in which some of these quantities can be effectively
combined. Let ¢, g, [, and r stand for the cost of production
per unit produced, price (gain) per unit sold (with g > c¢),
loss per unit not sold, and lost revenue (or bumping reward
in the airline context) per unit ordered but not matched due
to the lack of availability. Everything is measured in dollars.
Let Ws(e, g,1,7, D) and EW;(c, g,1,r, D) denote the random
variable corresponding to the total profit and its expected
value, respectively, for the seller if s units are stocked.
This quantity ultimately depends on the demand X which is
independent of s and the number of sales V; with s units
stocked.

In the case of overstocking the profitis g X —I(s—X)—cs =
(g+1)X —(I+¢)s, if X < s, and in the case of under stocking
itisgs—r(X —s)—cs=(g+r—c)s—rX,if X > s. Note
that both forms work if the stock level s is properly set at X.
We also add that if ¢ = 0 then [ > O represents the loss due
to unsold items. If ¢ > 0 and [ < 0 then —{ may correspond
to the per unit salvage value. On the other hand, if ¢ > 0
and [ > 0 then [ may represent extra cost due to restocking
and storage. In general, ¢ + [ > 0 is the actual per unit cost
combined with loss and salvage due to unsold units.

For example, we want to find the maximum expected
profit for the demand X ~ Binomialln = 10,p = .50],
with ¢ = $3,1 = $1, and ¢ = r = $0. After graph-
ing EW,(0,¢,1,0, Binomialln = 10,p = 0.50]),s =
1,2,...,10, we obtain that the best choice for s is 6. Note,
however, that we can find the answer without any graphing by
finding the g/(g+1) = 3/(3+4 1) = 0.75 quantile value of the
distribution function of the demand as stated in Theorem [I1.2]

III. THE REDUCTION

Our goal is to present a method that reduces the general
problem to its most well known base case of the newsboy
problem with ¢ = r = 0, see e.g., [6, Example 4b, pp145-146].
Of course, the cost ¢ can be easily introduced into this case.
However, it is somewhat surprising that r can be absorbed by
g. This fact is quite counterintuitive since we don’t expect the
per unit loss r to be combined with the per unit gain g. As
we will see, we can reduce the discussion to calculations with
Ws(0,g + r,1,0, D). Although, the formulas are well known
in the general case, and usually derived by dull mathematical
manipulations, we have not found an explanation or suggestion

in the literature for such a simple reduction.

Besides the cost of production, we have one source of
gain and two sorts of losses. We might encounter loss due to
leftover units and loss due to losing business (or compensating
for inconvenience, e.g., offering bumping rewards in the airline
business). In both cases, the loss depends on how the actual
level of demand compares to the level of stocking. Amazingly,
as we mentioned, the second kind of loss can be combined
with the gain. To prove this we use the airline analogy. Since
the argument involves an extra charge paid by the hopeful
passengers, it might turn out to be quite appealing to the
airlines but a rather dangerous mental exercise from the cus-
tomer’s point of view—not to mention that once implemented
passengers might be sensitive to higher ticket prices.

In fact, the airline industry has always been most cre-
ative in embracing new ideas for increasing revenue. As
the Los Angeles Times reported in its Daily Travel & Deal
Blog in September of 2009 (cf. http:/travel.latimes.com/
daily-deal-blog/index.php/southwest-airlines-a-5256), South-
west Airlines added “an optional charge for ’EarlyBird
Check-In,” the right to board the plane immediately fol-
lowing Southwest’s Business Select and Rapid Rewards A-
List customers. Fliers can pay an extra $10 for the peace
of mind that they’ll get to board as soon as possible and
grab an open seat just that much sooner. Also included in
the service is automatic check-in within 36 hours of your
flight’s departure.” Southwest also added extra fees for un-
accompanied minors, dogs and cats, and doubled its fees
for a third or overweight bag in 2009. Other companies
use checked-bag charges (cf. http://www.airfarewatchdog.com/
blog/3801089/airline-baggage-fees-chart/). The proof suggests
an extra fee for each potential passenger. We have no doubt
that, by making an appealing mathematical explanation go
terribly wrong, the airlines will be happy to explore this
surcharge option as well. On the other hand, we are not sure
that the obvious educational benefits gained from simplifying
the optimization problem will compensate for any fee and
think that the airline industry should not listen...

Theorem III.1. We have that

Ws(e,g,l,7,D) =Ws(0,g+r,1,0,D) —cs —rX. (1)

Proof: Clearly,
WS(C7Q>Z7T7 D) = WS(OagylaTaD) — CS,

and thus, without loss of generality and after subtracting the
cost of production cs, we suppose that ¢ = 0. Now we borrow
the terminology from the airline context, and assume that
potential customers are required to pay an entrance fee upon
arrival at the airport of their departure. This fee of $r is paid by
all passengers who present themselves at check-in, irrespective
of whether they will be accommodated or not. Note that the
concept of the entrance fee is different from that of paying the
fare in advance since no-shows do not pay this fee.

In comparing the two sides of (I)), we can ignore the “profit”
due to the loss [ per unit unsold since it is common in both
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“models,” and hence the difference W;(0,9 + 7,1,0,D) —
Ws(0,g,1,7, D) is not affected.

We consider the quantity Ws(0,g,l,7,D) + rX. In fact,
we observe that the total profit comes from selling X units
and generating g + r profit per unit sold if the demand can
be completely satisfied, i.e., X < s. However, if this is not
the case, then the bumping reward wipes out the entrance fee
for every order beyond s, and the only gain that remains is
(g + r)s from the first s orders.

In the case of W, (0,g+1,1,0, D), a g+r profit is generated
for every unit sold if X < s as in the previous case. On the
other hand, now there is no bumping reward; thus, a per unit
profit of g + r is generated for each of the first s satisfied
customers if X > s. We get that the total profit W,(0,g +
r,1,0, D) is equal to that of the first model. [ |

For the sake of completeness, we derive a result about
finding the best value of s which is a generalization (cf. [7}
ppl13-114] or [4, S18.7, pp875-877]) of a well-known fact in
the case of ¢ =r = 0 (cf. [6, Example 4b, pp145-146]).

Theorem IIL.2. Let F~'(x) denote the quantile function, i.e.,
the inverse of the cumulative distribution function F(x) of X
in the sense that F~1(x) is equal to the smallest y such that
F(y) = x. Then we have that

s—p1(9Fr=c 2)
g+r+1

for the number s of units to be stocked to optimize the expected
profit.

Proof: We use Theorem [l11.1| and note that to maximize
the expected profit EW,(c, g, 1, r, D) with respect to s we can
ignore the term —r.X in (1) since it does not depend on s.

First we deal with the case in which X is a discrete random
variable. We derive that the expected value of Wi(c,g +
r,0,0,D) is

EW,(c,g+7,1,0,D)=(g+7) Y iP(X =)

+(g+r)_sZP(X =)
- Z(s — ) P(X =1) — cs,

i<s

and after adjusting the third term on the right hand side by
=13 5s(s —8)P(X =1) =0, we get that

EWS(C,Q+T,Z,O,D): (g+T)EVs_Z(S_E%)_CS (3)
=(g+r+)EVy— (l+¢)s,

with Vs denoting the number of sales.

We note that (3)) can be easily derived without any calcu-
lation: aside of the production cost, the gain is due to the
number of sales and the loss comes from overstocking. The
latter quantity is [ times the size s reduced by the expected
size of the sales since sales do not generate any loss.

We also get that the difference in expected total profit by
preparing for one more customer is Agy1 = EWsy1(0,9 +
r,0,0,D)—EW,(0,9+7,1,0,D) = (9+r+1)E(Ve31—Vs)—

(I4c) = (g+r+1) X is opq P(X = i)—(I+c) since Vi1~V
is the indicator variable of the event that X =7 > s+ 1if X
is a discrete random variable. Thus the expected profit reaches
its largest value if s is largest so that

Apr=(g+r+1) > PX=i)—(+c)>0
i>s+1
since clearly, Ay is a decreasing function in s. The solution
is one more than the largest s for which

ZP(XZZ')<M,
1<s g+7’+l

or equivalently, the smallest s so that

P(X<s) >l "C
g+r+l
If X is a continuous random variable then first we observe
that
QEV‘ = 9 (/Sxf(x)dx+s/oof(x)dx> =P(X >5)
as 7 9s \ Uy s -

Similar to our use of (3 in deriving A4y, this yields that

0

8—EWS(C,g +70,0,D)=(g+r+1)P(X >s)—(I+¢)
E

which is positive as long as

g+r—c

g+r+1

as in the discrete case. [ ]

P(X <s)<

For a given demand distribution, the value of s can be easily
found by, say, using some software package, e.g., S-PLUS or
R. From a statistical point of view, if F' is continuous and
unknown then we can take the order statistics of a sample of
size n from the demand distribution and construct confidence
intervals of the form [Xj.,,X,.,] for any required quantile.
Here 7 and j depend on the given confidence level but not
on the actual distribution; thus, it provides a distribution-free
estimation method for s. If F' is discrete then this interval will
work at the given or higher confidence level, cf. [8].

The solution given in (Z) tells us that we should set the
stock level to satisfy (g +r — ¢)/(g + r + 1) fraction of the
demand. To interpret this we can benefit from switching from
maximizing expected profit to minimizing expected cost. As
a rule of thumb, we can view the numerator g — c + r as the
unit cost of underordering (or “underage”), i.e., decrease in net
profit due to failing to order a unit that could have been sold,
including loss of customer goodwill, and the denominator as
the sum of this cost and the unit cost ¢+ of overordering (or
“overage”), i.e., decrease in net profit due to ordering a unit
that could not be sold, cf. [4]. This can be justified by noting
that the discrete case can be easily treated as a special case of
the following

Problem (Problem 2 in [9]) Let 1 < 29 < --- < x, be n
real numbers. Given the positive weights wy, ws, . .., w, find
an a such that the minimum of

D(a) = D(a;wy,wa, ..., w,) = sz\:ﬁz —al
i=1



REVISITING THE NEWSBOY PROBLEM

is achieved.

We rephrase the solution from [9]. The function D(a) is
non-negative, continuous and piecewise linear, so its minimum
is attained at one of the points where the linear segments are
joined, i.e., at some x,,. This problem can easily be reduced
to finding the minimum m such that

w,, = iwz/iwZ > 0.5.
i=1 =1

(The optimum value a = z,, is sometimes referred to as the
weighted median of the values z; with weights w;.) To see
this we need only to check the changes in D(a) as a moves
from the left of x; to the right of z,. A change from a to
a+h,h > 0, within the interval [, Z,+1) yields the change
D(a+h)—D(a) = h(3\" wi—Y_;_, 1 w;); thus, we should
increase a until D(a + h) — D(a) ceases to be negative, and
thus, (@) follows.

To apply this to our situation in which we have a discrete
demand distribution with a finite support set of size n, we set
x,=1—1,1<i<n,w=(c+)PX =u1;) for 1 <i<
m=s+landw; = (g—c+r)P(X =z;) fors+1<i<n.
The criterion (4) turns into w),, = (c+1)F(s)/((c+1)F(s)+
(g—c+7)(1=F(s))) > 0.5,1e., F(s) > (g—c+7r)/(g+r+1).
Clearly, the problem and its solution can be generalized to an
infinite support set 1 < xp < ... as long as Y .o w; is
finite.

4)

IV. DISCUSSION AND CONCLUSIONS

Textbooks often use the newsboy problem to illustrate the
inventory management paradigm. They derive the optimum un-
der different settings by the application of the same approach:
calculate the benefit of slightly changing the inventory level.
This standard approach becomes a repetitive task requiring
only pedagogically counterproductive rote calculations. In
this note we found that determining the optimum tradeoff
between over and under stocking in the various inventory
settings should not be a cumbersome mathematical task. In
fact, introducing the cost of lost revenue into the usual basic
model does not lead to any complications if one uses the right
reduction. We have not found an explanation or suggestion
in the literature for such a simple reduction. In addition, the
underlying optimization problem can be rephrased in terms of
more general problems which makes the process and result of
solution more transparent.

It would be interesting to explore other more complex
models whether similar reduction could be applied for finding
optimum solutions.
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