
A COUNTING BASED PROOF OF THEGENERALIZED ZECKENDORF'S THEOREMTam�as LengyelMathematics Department, Occidental College, 1600 Campus Road, Los Angeles, CA 90041e-mail: lengyel@oxy.edu(Submitted November 2004-Final Revision March 2005)ABSTRACTWe give a counting based short proof of the generalized Zeckendorf's theorem claimingthat every positive integer can be uniquely represented as a sum of generalized Fibonaccinumbers of order l with no l consecutive indices.1. INTRODUCTIONZeckendorf's theorem [4] claims that every positive integer n has a unique representationn = mnXi=1 Fki such that 0� k1 � k2 � � � � � kmnwhere a� b means that b�a � 2: The usual proof is based on demonstrating by mathematicalinduction on n, that the greedy algorithm produces the Zeckendorf representation of n, andthat it is unique.The Zeckendorf representation plays an important role in many applications [2]. Forexample, the losing positions in Wytho�'s game are (an; bn) = (bn�c; bn�2c) and (bn; an); n �1; and the Zeckendorf representation of the larger coordinate, bn, can be easily obtained byapplying a left shift to that of the smaller one, an [1].A generalized version of Zeckendorf's theorem [2] deals with generalized Fibonacci num-bers of order l. We set Gi = 2i�1; 1 � i � l, and de�ne Gn = Pli=1Gn�i for n > l. (Thecase of l = 2 corresponds to the Fibonacci numbers with an index shift.) There is a uniquerepresentation for any positive integer n in the form ofn = mnXi=1 Gkiwith no l consecutive indices. Here we present a counting based short proof.2. PROOFWe call a sum of generalized Fibonacci numbers of order l feasible if it has no l consecutiveindices. We accomplish the proof in three steps. First, we prove that there are Gn+1 feasiblesums with terms G1; G2; : : : ; Gn; n � l; then we show that all these feasible sums are boundedfrom above by Gn+1 � 1, and all of the sums are di�erent. Therefore, every number i; 1 � i �Gn+1 � 1, is generated exactly once as a feasible sum which concludes the proof.Let gn denote the number of feasible sums with terms G1; G2; : : : ; Gn (counting possiblemultiplicities of the sums, though we will see that there are no such occurrences here). We also1



A COUNTING BASED PROOF OF THE GENERALIZED ZECKENDORF'S THEOREMset g0 = 1. For n � l, depending on whether the largest non-included term is Gn; Gn�1; : : : ;or Gn�l+1, respectively, we have gn�1 + gn�2 + � � �+ gn�l possibilities and thus, gn satis�esthe recurrence relation gn = gn�1 + gn�2 + � � �+ gn�l:Clearly, gi = 2i = Gi+1; 0 � i � l � 1; which guarantees that gn = Gn+1; n � l.Next we show that the sums generated in this way fall between 0 and Gn+1 � 1. This isevident for n � l � 1. For n � l, the largest sum m includes the terms Gn; Gn�1; : : : ; Gn�l+2and excludes Gn�l+1, then includes l� 1 consecutive terms if possible, etc. Now simply writeGn+1 as Gn + Gn�1 + � � � + Gn�l+1 and compare it to m. We can cancel the �rst l � 1terms which leaves us with a comparison of Gn�l+1 and Gn�l+Gn�l�1+ : : : , and we proceedsimilarly. Once we reach an index so that n� j l � l, we can see that the di�erence is at leastone in favor of the �rst quantity.To prove unicity, suppose that there are two di�erent representations of the same number.We can assume that they have no term in common (otherwise we can remove the terms fromboth). In this case we can �nd a term Gi in one representation so that all terms, even thelargest Gj in the other representation, are smaller. But by the above argument the secondrepresentation results in a sum not exceeding Gj+1 � 1 and thus Gi � 1. This contradicts theassumption.Note that for the original version of Zeckendorf's theorem l = 2 and Gn = Fn+1. In thiscase the transfer-matrix method [3] also easily yields gn but it becomes complicated for largerl. We believe that it will be worth �nding a generating function based proof as well.ACKNOWLEDGMENTI wish to thank Greg Tollisen and the referee for careful reading of the manuscript andtheir suggestions. REFERENCES[1] A. S. Fraenkel. \How to Beat Your Wytho� Games' Opponent on Three Fronts." Amer.Math. Monthly 89 (1982): 353-361.[2] A. S. Fraenkel. \Systems of Numeration." Amer. Math. Monthly 92 (1985): 105-114.[3] R. Stanley. Enumerative Combinatorics. Vol. 1, Wadsworth & Brooks/Cole, 1986.[4] E. Zeckendorf. \Repr�esentation des nombres naturels par une somme de nombres deFibonacci ou de nombres de Lucas." Bulletin de la Soci�et�e Royale des Sciences de Li�ege41 (1972): 179-182.AMS Classi�cation Numbers: 11B39, 11B37, 05A15z z z
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