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1. INTRODUCTION

The two-person nim-type game Euclid, E, is played on a board. A position (a, b), or
equivalently (b, a), consists of a pair of positive integers. Players alternate moves, a move
consisting of decreasing the larger number in the current position by any positive multiple of
the smaller number, as long as the result remains positive. The first player unable to make a
move loses. Some background information and references on Euclid can be found in [6]. It can
be proven that

Theorem A: Player 1 has a winning strategy in E if and only if the ratio of the larger number
to the smaller in the starting position is greater than the golden section Φ.

Nivasch [7] gave a polynomial-time algorithm for calculating the Sprague-Grundy function
g(a, b) of Euclid for all starting positions (a, b). Fraenkel [3] has recently found an interesting
parallel between Euclid and generalized Wythoff games, GWn. In GWn, a positive integer n
is given, and the two players play in the first quadrant of the integer lattice (with the borders
included). The first player starts with two given integers a and b represented by the point
(a, b). The moves are of two types: one either subtracts a positive integer from one of the
numbers or subtracts k > 0 from one and l > 0 from the other provided that |k− l| < n, while
leaving the resulting numbers nonnegative. The player unable to move loses. Note that the
case with n = 1 is the (standard) Wythoff game. Fraenkel gave polynomial-time algorithms for
computing the Sprague-Grundy function. (There is extensive literature on the Wythoff game
but we do not rely on or explore this connection any further.)

In the restricted version RE of Euclid, a set Λ of natural numbers is given, and a move
decreases the larger number in the current position by some multiple λ ∈ Λ of the smaller
number, as long as the result remains positive. The game with the special restriction set
Λ = Λk = {1, 2, . . . , k}, k ≥ 2, is denoted by REk and was analyzed in [6]. Winning strategies
and tight bounds on the length of this game assuming optimal play were presented and some
extensions were studied. The winner is determined by the parity of the position of the first
partial quotient that is different from 1 in a reduced form of the continued fraction expansion
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of b/a (Theorem 5 [6]).

To introduce the reduction, first we take the finite simple continued fraction expansion of
b/a = [a0, a1, a2, . . . an]. The natural number ai is called the ith partial quotient (or continued
fraction digit) of b/a. If an ≥ 2 then b/a = [a0, a1, a2, . . . an−1, an−1, 1] as well, with no change
in the digit sum. The former expansion is called the short form. Here we always use short
forms. In this way, the game E can always be played until some player has a real choice, i.e.,
ai ≥ 2 with some i.

Note that we will apply a slightly modified continued fraction expansion when using the
Stern–Brocot tree representation in Section 2.

The reduction of the partial quotients of [a0, a1, . . . , an] is motivated by the restriction set
Λk and results in a reduced sequence of digits after taking the following steps:

• drop any multiple of k + 1 from the continued fraction expansion and then
• replace every partial quotient ai > k by ai mod (k + 1).

(1)

We will see in the new proofs of Theorems A-C why these reductions work. (In [6] we replaced
ai > 2 by a 2 if ai ≡ 2, 3, . . . , k mod (k + 1), and for the sake of conformity, we appended a 2
to the end of all reduced sequences not ending in a 2.)

Theorem B (Theorem 5 [6]): Player 1 has a winning strategy for the game REk, k ≥ 2, if
and only if in the reduced form the first digit that is different from 1 appears at a position
with an even index.

For the misère version of the games, (i.e., in which the player who makes the final move is
the loser) Collins obtained

Theorem C (Theorem 4 [2]): The first player to have a choice can win misère E by adopt-
ing the following strategy: when faced with the position [ai, ai+1, . . . , an−1], with ai ≥ 2, make
the same move as in the original version E if at least one of ai+1, . . . , an − 1 ≥ 2. Otherwise,
play so as to leave an odd number of ones (whereas in the original version E one would leave
an even number). This strategy works not only for Euclid with no restriction (i.e., E) but
restriction sets Λk (i.e., REk), and other equivalent restriction sets.

Equivalent restriction sets will be explained in Section 2. In Section 2, we also introduce
and discuss the Stern–Brocot tree representation of E and RE as a general tool to discuss any
modifications of Euclid. Section 3 contains the main result: the Sprague-Grundy function for
E can be expressed by the beginning segment of the continued fraction expansion of b/a with
a < b. Combined with the reductions (1), we can calculate the Sprague-Grundy function for
REk and other equivalent restriction sets.

2. THE STERN-BROCOT TREE AND SUBTRACTION GAMES

The original and restricted versions of Euclid can be analyzed beyond the scope of Theo-
rems A-C too, by using the Sprague-Grundy function. Indeed, we can play the proper sequence
of subtraction games on the Stern–Brocot tree ([4] and [1]) and use this fact to determine the
Sprague-Grundy function in a recursive fashion. We return to other methods of computing the
Sprague-Grundy function in Section 3.
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The Stern–Brocot tree contains all possible nonnegative fractions (plus the “strange frac-
tion” 1

0) expressed in lowest terms, with each fraction appearing exactly once. (We can find
the Farey sequence Fm for any m ≥ 1 as a subtree of this tree or view this tree as a structure
imposed on the Farey sequence.) The fractions are the nodes of the tree. We put the two
“fractions” 0

1 and 1
0 at the top level. Then we successively define full levels of the tree by

constructing the “mediant” a+c
b+d of two “horizontally” closest entries (from any higher levels)

a
b and c

d (on the left and right, respectively) and placing it midway between the two fractions.
We connect a+c

b+d to the “fraction” at the immediately preceeding level. (Note that 1
1 is the only

fraction with two predecessors.)

Figure 1: (based on [1]) The top portion of the Stern–Brocot tree

Visually, one can play E and any RE on the Stern–Brocot tree of rationals, or more precisely
on the path starting at point 1

1 and ending at point b
a , with a < b, corresponding to the

Euclid position (a, b). The game is represented by the path formed by intervals of lengths
a0, a1, . . . , an−1, an − 1, respectively, and corresponding to the partial quotients in the contin-
ued fraction expansion of the starting position b/a = [a0, a1, . . . , an], a < b (one being removed
from the last partial quotient). Two consecutive intervals share one of their endpoints. Start-
ing with the first interval, each move takes the player-to-move to another point of the interval
on a lower level.

We also need the notion of subtraction games, and that of Bachet’s subtraction game in
particular. In the latter case, we start with n > 0 chips arranged in a single pile. Players
alternate in removing λ ∈ Λk, i.e., 1, 2, . . . , or k chips from the pile. The game ends when
one of the players takes the last chip and thus wins. In general, in subtraction games the
numbers that are subtracted in the consecutive rounds are from some prescribed set, Λ, of
positive integers. The Sprague-Grundy function for the game with Λ = {1, 2, . . . } is g(n) = n
while for Bachet’s game is g(n) ≡ n mod (k + 1), and thus has the period (0, 1, . . . , k) of length
k + 1. However, we will play subtraction games on a sequence of n + 1 connected intervals as
mentioned above, and thus, we will need a slight extension of the Sprague-Grundy functions.

The Sprague-Grundy number g(a, b) can be easily determined. In fact, we assign the
Sprague-Grundy value 0 to the terminal node b

a , and by moving up on the path, we extend
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the assignment to all nodes of the segment of length an − 1 by using the mex operation.
We can keep doing this by further extending this process of assignments to the consecutive
connected segments of lengths an−1, an−2, . . . , a0. At the points of connections we use the
Sprague-Grundy value of the endpoint of the previous segment to start the mex operations.
For example, for the Euclid starting position (3, 8) we get the path with segments of length
a0 = 2, a1 = 1, and a2 − 1 = 1, in order, as 8/3 = [2, 1, 2]. Therefore, the Sprague-Grundy
values along the path are G(8

3) = 0, G(5
2) = 1, G(3

1) = 0, G(2
1) = 1, and G(1

1) = 2. This implies
that the Sprague-Grundy value for the starting position (3, 8) in E is g(3, 8) = G(1

1) = 2 which
means that Player 1 can win. Indeed, tracing backward, Player 1 looks ahead to find a node
with a Sprague-Grundy value 0 and moves there: first from 1

1 to 3
1 , i.e., to (8−2∗3, 3) = (2, 3).

This is followed by a forced move to 5
2 , i.e., to (3− 1 ∗ 2, 2) = (1, 2) by Player 2, and Player 1

wraps up the game by moving to 8
3 , i.e., to (1, 2− 1 ∗ 1) = (1, 1). Note that any RE games can

be analyzed similarly.

Even in the misère version Player 1 has a winning strategy by moving to 2
1 , i.e., to (3, 5).

Note that for other starting points we have to restart the assignments of the values of the
G-function. In fact, the value of the Sprague-Grundy function at (a, b), i.e., g(a, b), is tied
to the continued fraction expansion of b/a which determines the path from 1

1 to b
a in the

Stern–Brocot tree. However, there is no significance associated with the actual fractions found
at the nodes, but only with the respective lengths of the segments of the path.

A recursive algorithm for computing the Sprague-Grundy function for E and RE

Recall that b/a = [a0, a1, a2, . . . , an] but the path can be better described by
[a0, a1, a2, . . . , an − 1] as we have seen it above. In this section then, we will assume that
one has already been removed from the last digit (as in [2]) whenever we consider the Euclid
position as [a0, a1, . . . , an] to avoid individual discussion involving the last digit. (Therefore,
the “Euclid position representation” [a0, a1, . . . , an] for the game (a, b) differs slightly from the
original continued fraction representation of b/a.) To compute the Sprague-Grundy function,
we work from right to left: to find the Sprague-Grundy value of [a0, a1, a2, . . . , an], we look
first at the Sprague-Grundy value of [an], then [an−1, an], and so on. To find g([ai, . . . , an]), we
need to know only ai and the Sprague-Grundy value of the first “connection point” to its right.
Therefore, we define the sequence {ai, ci}, i = n, n− 1, . . . , 0, with cn = 0, cn−1 = g([an]), and
in general, ci = g([ai+1, . . . , an]) if i = n− 1, . . . , 0,−1. In this way, ci−1 = g([ai, . . . , an]) is a
function of ai and ci, and g(a, b) = c−1.

Now we can present fairly simple proofs of Theorems A-C by analyzing the different inter-
vals of the games.

Proof of Theorems A-C. For any game, we observe that if ai = 1, i = n, n − 1, . . . , 0,
then

ci−1 =

{
1, if ci = 0,
0, otherwise.

(2)

In other words, entering a segment of length one means that we are changing winner and loser.
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In fact, for E identity (2) can be extended to other values of ai, and we get that

ci−1 =

{
ai, if ai > ci,
ai − 1, if ai ≤ ci,

thus ci−1 > 0 if ai ≥ 2. The proof of Theorem A immediately follows in its equivalent form:
the first player facing a digit different from 1 has a winning strategy. Note that ci−1 6= ci.

For REk, ci−1 = ci, 0 ≤ i ≤ n, is possible. It happens exactly if ai ≡ 0 mod (k + 1),
and then we can drop a full segment of length ai from the path. Also, g([ai, ai+1, . . . , an]) =
g([1, ai+1, . . . , an]) if ai > 2 and ai ≡ 1 mod (k + 1). In all other cases, i.e., when ai ≥ 2 and
ai 6≡ 0, 1 mod (k + 1), we have ci−1 6= 0, and what matters is which player “faces” this digit
ai during the game. After these reductions we can answer the question whether c−1 = 0. The
answer depends on the parity of the smallest i ≥ 0 such that the reduced digit is at least two.
Now Theorems B and C follow.

We should spend a little more time on some games that are “equivalent” to REk for some
k, and therefore, can be fully analyzed without posing new difficulties. As a matter of fact,
many subtraction-based games with infinite restriction sets display a similar periodicity and
are equivalent to Bachet’s game for some k [2]. For example, the (single pile) subtraction
game with restriction set {1, 2, 3, 5, . . . , pk, . . .}, where pk is the kth prime number, has the
same Sprague-Grundy function as Bachet’s subtraction game with Λ3 = {1, 2, 3}. More for-
mally, let G be any restriction game and let Bk be Bachet’s subtraction game with the set
Λk = {1, 2, . . . , k} of allowed subtractions. We denote the Sprague-Grundy functions for G
and Bk by gG and gBk, respectively, and we write G ≡c Bk if games G and Bk have the same
Sprague-Grundy function with c (c ≤ k) being the Sprague-Grundy value of the terminal po-
sition, i.e., gG = gBk and gG(0) = gBk(0) = c.

If G and Bk have the same Sprague-Grundy function for all c ≤ k then we write G ≡ Bk. In
the single pile form the value of the terminal position is zero but in Euclid, the position {ai, ci}
is equivalent to the single pile game with ai counters, the only difference being that the Sprague-
Grundy value of the terminal position is ci rather than zero. The following somewhat surprising
theorem shows that G ≡0 Bk is a necessary and sufficient condition for the equivalence.

Theorem D (Theorem 2 [2]): G ≡0 Bk if and only if G ≡ Bk.

The Stern–Brocot analogy shows that games which are equivalent to one of Bachet’s games
in the single pile version are equivalent in Euclid as well [2]. Further extensions were given in
[2] for move-size restricted versions of Euclid.

3. ON THE SPRAGUE-GRUNDY FUNCTION

FOR E AND RE: DIRECT CALCULATIONS

Theorem A tells us that if a < b then g(a, b) > 0 for E exactly if b/a > Φ. We can
refine this statement and compute g(a, b) for E without the Stern-Brocot correspondence by a
direct approach with a geometric flavor. In fact, Gabriel Nivasch [7] has recently determined
the Sprague-Grundy value g(a, b) of position (a, b) by g(a, b) = bb/a − a/bc if a ≤ b, for the
unrestricted original version of Euclid, E. Moreover, he illustrates the Sprague-Grundy values
in a geometrically appealing form (Figure 2) by observing that the positions (a, b), a < b,
with Sprague-Grundy value n are those lattice points lying between the rays b = Φna and
b = Φn+1a, i.e., Φn < b/a < Φn+1 where Φn = (n +

√
n2 + 4)/2, n ≥ 1, and Φ0 = 1. Note that
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Φ1 = Φ. Thus, g(a, b) depends on the slope of b/a only. The Sprague-Grundy value of the
position g(a, b) with a > b can be determined by symmetry.

Figure 2: (by Gabriel Nivasch) The Sprague-Grundy function for Euclid, E

Aviezri Fraenkel [3] further developed on Nivasch’s observations and computed the Sprague-
Grundy function by using a continued fraction expansion based numeration system. From
Nivasch’s function it also follows that one can express g(a, b) via the continued fraction expan-
sion of b/a in yet another way. We prove the following

Theorem: We take the continued fraction expansion of b/a = [a0, . . . , an], a < b, and append
infinity at the end for the classification below to work. The Sprague-Grundy function g(a, b)
is equal to k if the continued fraction expansion of b/a starts with

• an even number of identical partial quotients k followed by a larger quotient (case 1)
or

• an odd number of identical partial quotients k + 1 followed by a larger quotient (case 2)
or

• an odd number of identical partial quotients k followed by a smaller quotient (case 3)
or

• an even number of identical partial quotients k + 1 followed by a smaller quotient (case
4).

Proof. Fraenkel [3] observed that Φn = [n, n, . . . ]. This helps us to prove that for a < b

Φk < b/a < Φk+1, (3)

i.e., that g(a, b) = k in all four cases. For example, let us assume that in the continued fraction
expansion of b/a we have an odd number of identical partial quotients k followed by a smaller
number l (i.e., we are in case 3). It is easy to prove that relation (3) holds true. Indeed,
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[k, k, . . . , k, l, . . . ] > [k, k, . . . , k, k, . . . ] = Φk is equivalent to [k, . . . , k, l, . . . ] < [k, . . . , k, k, . . . ]
and hence, to [. . . , k, l, . . . ] > [. . . , k, k, . . . ] (with respectively one and two fewer copies of k at
the beginning of the expansions). This can be continued to see if [k, l, . . . ] > [k, k, . . . ] holds
true, and obviously, it does. Also, Φk+1 = [k + 1, k + 1, . . . ] > [k, k, . . . , k, l, . . . ], so we are
done. The other cases are verified similarly.

Note that it does not matter if we use the short form or otherwise. The theorem gener-
alizes the characterization of the winning positions and strategy in E (i.e., Player 1 loses if
and only if k = 0 and we are in case 2), and makes calculating the Sprague-Grundy function
algebraically easy without having to compute the full continued fraction expansion (which is
again similar to the above characterization). In this way, we obtain another polynomial-time
algorithm to compute the Sprague-Grundy function in terms of the input a and b. Also note
that the question of finding a move to a game position with a given Sprague-Grundy value
often comes up when playing the sum of games.

For some restricted versions of E, e.g., REk, we can use this theorem (with g(a, b) = k if
the reduced form is [∞]) on the reduced form (1) of Section 1 to compute the Sprague-Grundy
function.
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