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1. Introduction

In this paper we characterize the divisibility by 2 of the Stirling number of the second kind, S(n; k); where

n is a su�ciently high power of 2. Let �2(r) denote the highest power of 2 which divides r. We show that

there exists a function L(k) such that for all n � L(k); �2
�
k!S(2n; k)

�
= k � 1 hold, independently from n:

(Here the independence follows from the periodicity of the Stirling numbers modulo any prime power.) For

k � 5, the function L(k) can be chosen so that L(k) � k� 2: We determine �2
�
k!S(2n + u; k)

�
for k > u � 1;

in particular for u = 1; 2; 3; and 4: We show how to calculate it for negative values, in particular for u = �1:

The characterization is generalized for �2
�
k!S(c � 2n + u; k)

�
where c > 0 denotes an arbitrary odd integer.

2. Preliminaries

The Stirling number of the second kind S(n; k) is the number of partitions of n distinct elements into k non-

empty subsets. The classical divisibility properties of the Stirling numbers are usually proved by combinatorial

and number theoretical arguments. Here we combine these approaches. Inductive proofs [1] and the generating

function method ([11] and [7]) can also be used to prove congruences among combinatorial numbers. We note

that Clarke [2] used an application of p-adic integers to obtain results on the divisibility of Stirling numbers.

We de�ne the integer-valued order function, �a(r); for all positive integers r and a > 1 by �a(r) = q; where

aqjr; and aq+1 j= r; i.e., �a(r) denotes the highest power of a which divides r: In this paper we are interested

in characterizing �a(r); where r = k!S(n; k) and a = 2: In [10] we give a lower bound on �a
�
k!S(n; k)

�
for

a � 3.

Lundell [11] discussed the divisibility by powers of a prime of the greatest common divisor of the set

fk!S(n; k); m � k � ng; for 1 � m � n: Other divisibility properties have been found by Nijenhuis and

Wilf [12], and recently these results have been improved by Howard [5]. Davis [3] gives a method to determine

the highest power of 2 which divides S(n; 5); i.e., �2
�
S(n; 5)

�
: A similar method can be applied for S(n; 6)

according to Davis.

We will use the well known recurrence relation for S(n; k) which can be proved by the inclusion{exclusion

principle

(1) k!S(n; k) =
kX
i=0

(�1)k�i
�
k

i

�
in:

For each prime number p and 1 � i � p� 1; ip � i (mod p) by Fermat's theorem, and this implies [1] that,

for 2 � k � p� 1; S(p; k) � 0 (mod p): We note that S(p; 1) = S(p; p) = 1:

Let d(k) be the sum of the digits in the binary representation of k. Using a lemma by Legendre [9], we get

�2(k!) = k � d(k):

Note that, for 1 � k � 4; identity (1) implies that �2
�
S(2n; k)

�
= d(k)�1: By other identities for Stirling

numbers (cf. Comtet [1], p. 227), �2
�
S(2n; k)

�
= d(k)� 1 for k; 2n � 3 � k � 2n:

Classical combinatorial quantities (e.g., factorials, Bell numbers, Fibonacci numbers, etc.) often form

sequences that eventually become periodic modulo any integer as it was pointed out by I. Gessel. The \vertical"

sequence of the Stirling numbers of the second kind, fS(n; k) (mod pN )gn�0 is periodic, i.e., there exist

n0 � k and � � 1 such that S(n + �; k) � S(n; k) (mod pN ) for n � n0:
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For N = 1; the minimum period was given by Nijenhuis and Wilf [12], and this result was extended for

N > 1 by Kwong ([7], Theorems 3.5 and 3.6). From now on �(k; pN ) denotes the minimum period of the

sequence of Stirling numbers fS(n; k)gn�k modulo pN ; and n0(k; p
N) � k stands for the smallest number of

nonrepeating terms. Clearly n0(k; pN ) � n0(k; pN+1): Kwong proved

Theorem A. (Kwong [7]) For k > maxf4; pg; �(k; pN ) = (p � 1)pN+b(k)�2; where pb(k)�1 < k � pb(k); i.e.,

b(k) = dlogp ke:

From now on we assume that p = 2; n � 1 and apply Theorem A for this case. Let g(k) = d(k)+ b(k)�2

and c denote an odd integer. Identity (1) implies �2
�
S(c � 2n; k)

�
= d(k)� 1 for 1 � k � minf4; c � 2ng. We

also set f(k) = fc(k) = maxfg(k); dlog2
�
n0(k; 2d(k))=c

�
eg: Therefore, c � 2f(k) � n0(k; 2d(k)): We note that

g(k) � 2dlog2 ke � 2: Lemma 3 in [8] yields f(2m) = m for m � 1 and c = 1.

In this paper we prove

Theorem 1. For all positive integers k and n such that n � f(k); we have �2
�
k!S(c � 2n; k)

�
= k � 1 or

equivalently, �2
�
S(c � 2n; k)

�
= d(k)� 1:

Numerical evidence suggests that the range might be extended for all n provided 2n � k and c = 1. For

example, for k = 7; we get g(7) = d(7)+b(7)�2 = 4 and n0(7; 23) = 7; therefore by Theorem 1, if n � f(7) = 4;

then �2
�
S(2n; 7)

�
= �2

�
S(c � 2n; 7)

�
= 2 for arbitrary positive integer c: Notice, however, that �2

�
S(8; 7)

�
= 2

also. We make the following

Conjecture. For all k and 1 � k � 2n, we have �2
�
S(2n; k)

�
= d(k)� 1:

By Theorem 1, the Conjecture is true for all k = 2m with m � n.

In Section 3 we prove Theorem 2, which gives the exact order of S(n; k) in a particular range for k whose

size depends on �2(n). Theorem 2 is the key tool in proving Theorem 1. Its proof makes use of the periodicity

of the Stirling numbers. It would be interesting to determine the function L(k); which is de�ned as the smallest

integer n0 such that �2
�
S(c � 2n; k)

�
= d(k) � 1 for all n � n0: By Theorem 2, we �nd that L(k) � k � 2 and

Theorem 1 improves the upper bound on L(k) if f(k) < k � 2:

In Section 4 we obtain some consequences of Theorem 2 by extending it for Stirling numbers of the form

S(c � 2n + u; k) where u = 1; 2; etc. We show how to calculate �2
�
S(c � 2n � 1; k)

�
: In neither case does the

order of S(c � 2n + u; k) depend on n (if n is su�ciently large), in agreement with Theorem A.

3. Tools and proofs

We choose an integer l such that l � n. We shall generalize identity (1) for any modulus of the form 2l:

Observe that, for any i even, in � 0 (mod 2l); and for all i odd, (�1)k�i will have the same sign as

(�1)k�1: Therefore, by identity (1)

(2) k!S(n; k) � (�1)k�1
kX

i=1
i odd

�
k

i

�
in (mod 2l):

The expression on the right-hand side of congruence (2) is called the partial Stirling number [11]. We explore

identity (2) with di�erent choices of n in order to �nd �2
�
S(n; k)

�
:

We shall need the following

Theorem 2. Let c be an odd and n be a non-negative integer. If 1 � k � n + 2 then �2
�
k!S(c � 2n; k)

�
= k�1;

i.e., �2
�
S(c � 2n; k)

�
=d(k)� 1:
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Roughly speaking, Theorem 2 gives the exact value of �2
�
k!S(m; k)

�
; for k � 2; if m is divisible by 2k�2.

The higher the power of 2 that divides m; the larger the value of k that can be used. We prove Theorem 1 and

then return to the proof of Theorem 2.

Proof of Theorem 1. Without loss of generality, we assume that k > 4: Observe that �2
�
S(c � 2n; k)

�
= d(k)� 1

is equivalent to

(3) S(c � 2n; k) � 0 (mod 2d(k)�1)

and

(4) S(c � 2n; k) 6� 0 (mod 2d(k)):

The proof of identities (3) and (4) is by contradiction. To prove the former identity, we set N = d(k) � 1,

hence Theorem A yields

(5) �(k; 2N ) = 2d(k)+b(k)�3

where d(k) + b(k)� 3 < g(k) � f(k):

We assume, to the contrary of the claim, that S(c � 2f(k); k) � a 6� 0 (mod 2N ): By Theorem A and the

period given by (5), we obtain that, for every positive integer m � c ; S(m � 2f(k) ; k) � a 6� 0 (mod 2N ):

This is a contradiction, for one can select m so that m � 2f(k) becomes c � 2n, with a large exponent n, and by

Theorem 2, S(c�2n; k) � 0 (mod 2N ) should be for su�ciently large n: It follows that in fact, S(c�2f(k); k) � 0

(mod 2N ); and Theorem A implies S(c � 2n; k) � 0 (mod 2d(k)�1) for all n � f(k):

To derive identity (4), we set N = d(k): In order to obtain a contradiction, we assume that S(c�2f(k); k) � 0

(mod 2N ): Now, by Theorem A, we get �(k; 2N ) = 2d(k)+b(k)�2; where d(k) + b(k) � 2 = g(k) � f(k): We

proceed in a manner similar to that used above by noting that the periodicity now yields S(m � 2f(k); k) � 0

(mod 2N ) for every positive integer m � c . It would imply that, for a su�ciently large n; S(c � 2n; k) � 0

(mod 2d(k)): However, this congruence contradicts Theorem 2. It follows that S(c �2n; k) 6� 0 (mod 2d(k)) for

n � f(k); and the proof is now complete.

Proof of Theorem 2. We set m = c�2n and select an l such that 1 � l � n+1: By Euler's theorem, �(2l) = 2l�1;

therefore, im � 1 (mod 2l) if i is odd. By simple summation, identity (2) yields

(6) k!S(m; k) � (�1)k�1
kX
i=1
i odd

�
k

i

�
= (�2)k�1 (mod 2l);

therefore, �2(k!S(m; k)) = k � 1; provided 0 � k � 1 < l:

We have two cases if k = n + 2: If m is odd, then n = 0 and k = 2: The claim is true, since

S(m; 2) = 2m�1 � 1; therefore, �2
�
2!S(m; 2)

�
= 1: If m is even, then we set l = n+ 2 � 3: By induction on

l � 3, we can derive that i2
l�2

� 1 (mod 2l) and identity (6) is veri�ed again.

Remark. By setting l = n+ 1; identity (6) implies the lower bound �2
�
k!S(c � 2n; k)

�
� n+ 1; for k � n+ 2:
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4. Related results

We will use other special cases of identity (2). Similarly to the previous proof, we get that, for all u � 0;

n � l � 1; and k � c � 2n + u;

(7) k!S(c � 2n + u; k) � (�1)k�1
kX

i=1
i odd

�
k

i

�
ic�2

n+u � (�1)k�1
kX

i=1
i odd

�
k

i

�
iu (mod 2l+2):

We set

h(k; u) = (�1)k�1
kX

i=1
i odd

�
k

i

�
iu:

By identity xu =
Pu

j=0 S(u; j)
�
x
j

�
j!; we obtain

h(k; u) = (�1)k�1
kX
i=1
i odd

�
k

i

� uX
j=0

S(u; j)

�
i

j

�
j! = (�1)k�1

minfu;kgX
j=0

S(u; j)j!
kX

i=1
i odd

�
k

i

��
i

j

�
:

We focus on the case in which k > u and derive

(8) h(k; u) = (�1)k�1
uX

j=0

S(u; j)j!

�
k

j

� kX
i=j
i odd

�
k � j

i � j

�
= (�2)k�1

uX
j=0

S(u; j)j!

2j

�
k

j

�
:

We introduce the notation r(k; u) = �2
�
h(k; u)

�
: Identity (8) implies that r(k; u) � k � u � 1: Observe that

jh(k; 0)j = 2k�1; and for u � 1;

(9) jh(k; u)j=2k�u�1 �
uX

j=1

ju2u�jkj � u(2u)u(k=2)u = u(uk)u:

By identity (7), for u � 0 and any su�ciently large l and n � l, we have �2
�
k!S(c �2n+u; k)

�
= r(k; u): In fact,

n � l = r(k; u)� 1 will su�ce; for instance, n � k � 2 will be large enough if u = 0 (Theorem 2). By identity

(9), we derive that r(k; u) � k�u�1+u log2 k+(u+1) log2 u; therefore, k�u�2+ du log2 k+(u+1) log2 ue

can be chosen for n if u > 0: We note that, similarly to the proof of Theorem 1, this value might be decreased.

The values of r(k; u) can be calculated by identity (8). For example, if k > u � 0 then

(10) r(k; u) =

8>>><
>>>:

k � 1; if u = 0
k � 2 + �2(k); if u = 1
k � 3 + �2(k) + �2(k + 1); if u = 2
k � 4 + 2�2(k) + �2(k + 3); if u = 3
k � 5 + �2(k) + �2(k + 1) + �2(k

2 + 5k � 2); if u = 4:

We state two special cases that can be proved basically di�erently; although, in the second case, only a partial

proof comes out by the applied recurrence relations.

Theorem 3. For k � 2 and any su�ciently large n; �2
�
k!S(c � 2n + 1; k)

�
= k � 2 + �2(k):

Proof. The proof follows from Theorem 2 and using the recurrence relation k!S(m; k) =

k
�
(k � 1)!S(m � 1; k � 1) +k!S(m � 1; k)

	
with m = c � 2n + 1: Notice, that by Theorem 1, n �

maxff(k); f(k � 1)g will be su�ciently large.

Theorem 4. For k � 3 and su�ciently large n, �2
�
k!S(c � 2n + 2; k)

�
= k � 3 + �2(k) + �2(k + 1):
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Proof. By identity (10), we obtain �2
�
k!S(c � 2n + 2; k)

�
= r(k; 2) = k � 3 + �2(k) + �2(k + 1): Observe that

n � maxff(k); f(k � 1); f(k � 2)g su�ces.

Notice that we could have used the expansion

k!S(c � 2n + 2; k) = k
�
(k � 1)!S(c � 2n + 1; k � 1) + k!S(c � 2n + 1; k)

	
:

By Theorem 3, the �rst term of the second factor is divisible by a power of 2 with exponent k� 3 + �2(k� 1);

while the second term is divisible by 2 at exponent k � 2 + �2(k): The �rst factor contributes an additional

exponent of �2(k) to the power of 2. We combine the two terms and �nd that there is always a unique term

with the lowest exponent of 2 if k 6� 3 (mod 4): For k � 3 (mod 4), however, this argument falls short and

we obtain only the lower bound k � 1 on �2
�
k!S(c � 2n + 2; k)

�
.

It turns out that calculating �2
�
k!S(c � 2n+ u; k)

�
for negative integers u is more di�cult than for positive

values. The periodicity guarantees that the order does not depend on n (for su�ciently large n).

We extend the function h(k; u) for negative integers u. We will choose an appropriate value l � 1 and

then set n so that it satis�es the inequality c � 2n + u � 2l. We use the convenient notation 1=i for the unique

integer solution x of the congruence i � x � 1 (mod 2l+2) if i is odd. Similarly to identity (7), we obtain

(11) k!S(c � 2n + u; k) � (�1)k�1
kX

i=1
i odd

�
k

i

��1
i

��u
(mod 2l+2):

For u < 0; we set

h(k; u) = (�1)k�1
kX
i=1
i odd

�
k

i

��1
i

��u

and express h(k; u) as a fraction pk(u)
qk(u)

in lowest terms. Notice that �2(pk(u)) � k � d(k) holds, since k! divides

both sides of (11) for any su�ciently large l. The order of �2
�
S(c � 2n + u; k)

�
can be determined by choosing

l � �2
�
pk(u)

�
� 1; and the actual order is �2

�
pk(u)

�
� k + d(k): We remark that, for c = 1; the value of n

can be set to �2(pk(u)):

We focus on the case of u = �1: Let

ak =
kX

i=1

�
k

i

�
1

i
:

We get

as � as�1 �

�
s

s

�
1

s
=

s�1X
i=1

1

i

n�s
i

�
�

�
s � 1

i

�o
=

s�1X
i=1

1

s

�
s

i

�
=

2s � 2

s
(s � 2):

By summation, it follows that ak =
Pk

i=1
2i

i
�
Pk

i=1
1
i
: Similarly, bk =

Pk

i=1

�
k

i

� (�1)i+1
i

=
Pk

i=1
1
i
(cf. Hietala

and Winter [4], or Solution to Problem E3052, in Amer. Math. Monthly 94(1987), No. 2, p. 185). Combining

these two identities, we obtain

(12) h(k;�1) =
kX

i=1
i odd

�
k

i

�
1

i
=

1

2

kX
i=1

2i

i
=

pk(�1)

qk(�1)
:

For example, for k = 5;we get h(5;�1) = 128
15 ; �2

�
p5(�1)

�
= 7 and n � 7: E.g., �2

�
S(127; 5)

�
= �2

�
S(255; 5)

�
=

� � � = 4:We remark that �2
�
S(63; 5)

�
= 4 holds, too. Notice that the recurrence relation S(N;K) = K �S(N �
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1;K)+S(N � 1;K� 1) implies that �2
�
S(c � 2n� 1; 2m� 1) = 0 for every su�ciently large n. By the theory of

p-adic numbers [6] and (12), we can derive that, for all su�ciently large n, �2
�
S(c�2n�1; k)

�
= �2

�
1
2

Pk

i=1
2i

i

�
�

k+d(k) = �2

�
1
2

P1
i=k+1

2i

i

�
�k+d(k

�
where �2

�
a=b
�
is de�ned as �2(a)��2(b) if a and b are integers. This fact

helps us to make observations for some special cases. For instance, if n > m � 3; then �2
�
S(c � 2n� 1; 2m)

�
� 2

holds, and, therefore, �2
�
S(c � 2n � 1; 2m + 1)

�
= 1: Numerical evidence suggests that, for n > m � 4;

�2
�
S(c � 2n � 1; 2m)

�
= 2m � 2; although we were unable to prove it.

We can determine �2
�
S(c � 2n � 1; k)

�
for most of the odd values of k by systematically evaluating

�2

�Pk

i=1
2i

i

�
; and obtain

Theorem 5. For all su�ciently large n; �2
�
S(c �2n�1; k)

�
= d(k)��2(k+1); if k � 1 is odd and k 6� 5 (mod 8)

and k 6� 59 (mod 64) and k 6� 121 (mod 128):

We leave the details of the proof to the reader.

We note that there is an alternative way of determining pk(�1): We set

Ik�1 =
k

2k�1
1

2

kX
i=1

2i

i
:

One can prove that Ik =
Pk

j=0
1

(kj)
and Ik =

k+1
2k Ik�1+ 1: For other properties of Ik; see Comtet ([1] p. 294,

Exercise 15). The latter recurrence relation simpli�es the calculation of �2
�
S(c � 2n� 1; k)

�
for large values of k.

We can use identity (7) in a slightly di�erent way and gain information on the structure of the sequence

fS(c � 2n + k; k); S(c � 2n + k + 1; k); � � � ; S((c + 1) � 2n + k � 1; k) (mod 2q)g for every q; 1 � q � d(k) � 1

and su�ciently large n: We observe that the sequence always start with a one and ends with at least d(k)� q

zeros. Notice that, for every l and u such that k > u � l > k � d(k)

0 = k!S(u; k) � (�1)k�1
kX

i=1
i odd

�
k

i

�
iu (mod 2l):

We set q = l � k + d(k). Clearly 1 � q � d(k)� 1: By (7), we get that k!S(c � 2n + u; k) � 0 (mod 2l) for

all n � l � 2 � 1: This observation yields that the d(k)� q consecutive terms,

(13) S(c � 2n + u; k) (mod 2q); u = k � d(k) + q; k � d(k) + q + 1; : : : ; k � 1

are all zeros. Similarly, we can derive that k!S(c � 2n + k; k) � k! 6� 0 (mod 2l) , i.e., S(c � 2n + k; k) � 1

(mod 2q): Identities (8) and (10) imply that there might be many more zeros in the sequence at and after the

term S(c � 2n; k) (mod 2q):

For example, if k = 7 and l = 5; then S(c � 2n + u; 7) � 0 (mod 21); for u = 5 and 6; and all n � 3:

Similarly to the proof of Theorem 1, it follows that identity (13) holds if n � f(k). For instance, if k = 23 and

l = 21; then S(c � 2n + u; 23) � 0 (mod 22) for u = 21 and 22 provided n � f(23) = 7:
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