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Abstract

The game Euclid, introduced and named by Cole and Davie, is played with
a pair of nonnegative integers. The two players move alternatively, each
subtracting a positive integer multiple of one of the integers from the other
integer without making the result negative. The player who reduces one
of the integers to zero wins. Unfortunately, the name Euclid has also been
used for a subtle variation of this game due to Grossman in which the game
stops when the two entries are equal. For that game, Straffin showed that
the losing positions (a, b) with a < b are precisely the same as those for
Cole and Davie’s game. Nevertheless, the Sprague-Grundy functions are not
the same for the two games. We give an explicit formula for the Sprague-
Grundy function for the original game of Euclid and we explain how the
Sprague-Grundy functions of the two games are related.

1. Introduction

Euclid is a two person impartial combinatorial game, introduced and
named by Cole and Davie [1]. It starts with a pair of positive integers. The
players move alternatively, each subtracting a positive integer multiple of one
of the integers from the other integer without making the result negative.
The player who reduces one of integers to zero wins. It was shown in [1]
that for a < b, the position (a, b) is a losing position if and only if b < φa,

where φ =
√

5+1
2

is the Golden ratio. Aspects of Euclid were studied in
[12]. Unfortunately, there is a common misunderstanding concerning Euclid.
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9 0 9 4 3 1 1 0 0 0 1
8 0 8 4 2 2 0 0 0 1 0
7 0 7 3 1 1 0 0 1 0 0
6 0 6 3 2 0 0 1 0 0 0
5 0 5 1 1 0 1 0 0 0 1
4 0 4 2 0 1 0 0 1 2 1
3 0 3 0 1 0 1 2 1 2 3
2 0 2 1 0 2 1 3 3 4 4
1 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0

�
���

��a
b

0 1 2 3 4 5 6 7 8 9

Table 1: Sprague-Grundy values G(a, b) for a, b ≤ 9

Grossman [5] introduced a subtle variation of Euclid in which the game stops
when the two entries are equal. Notice that Grossman’s game is just the
misère version of Euclid. In the literature, the term Euclid commonly refers
to Grossman’s variation and various aspects and extensions of this game have
been studied in [8, 9, 2, 4, 3]. In particular, the misère version of Grossman’s
game was studied in [6]. In this paper we will reserve the term Euclid for Cole
and Davie’s original game, and refer to its popular variation as Grossman’s
game. For Grossman’s game, Straffin [13] showed that the losing positions
(a, b) with 0 < a < b are precisely the same as those for Euclid. Nevertheless,
the Sprague-Grundy functions are not the same for the two games. For a
position (a, b) in the original game of Euclid, we denote its Sprague-Grundy
value G(a, b), while for Grossman’s game, we denote it GG(a, b). Nivasch [11]
proved that GG(a, b) = b| b

a
− a

b
|c. Table 1 gives the Sprague-Grundy values of

position (a, b) for a, b ≤ 9, and in Figure 1, the possible moves are shown for
positions with a ≤ b ≤ 5. The analogous information is given for Grossman’s
game in Table 2 and Figure 2.

In order to present the formula for G(a, b), we use that the continued
fraction expansion [a0, a1, . . . , an] of b/a,

b

a
= a0 +

1

a1 + 1
a2+ 1

... 1

an−1+ 1
an

,
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Figure 1: The moves in Euclid for a ≤ b ≤ 5

and we adopt the convention that an > 1 if n > 0.

Theorem 1. Let 0 < a < b, consider the continued fraction expansion
[a0, a1, . . . , an] of b/a, and let I(a, b) be the largest nonnegative integer i such
that

a0 = · · · = ai−1 ≤ ai.

Then the Sprague-Grundy value of the position (a, b) in the game Euclid is

G(a, b) =

⌊
b

a

⌋
−

{
0 : if I(a, b) is even,

1 : otherwise.

It is natural to ask whether the above result has a formulation that doesn’t
involve continued fractions, analogous to Nivasch’s formula for Grossman’s
game [11]. The following corollary and Theorem 3 (except for a special case)
provide such a formulation. We remark that when a0 = 1, the number
λ1 = φ, the Golden ratio, and so the corollary extends Cole and Davie’s
determination of the losing positions.
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9 8 4 2 1 1 0 0 0 0
8 7 3 2 1 0 0 0 0 0
7 6 3 1 1 0 0 0 0 0
6 5 2 1 0 0 0 0 0 0
5 4 2 1 0 0 0 0 0 1
4 3 1 0 0 0 0 1 1 1
3 2 0 0 0 1 1 1 2 2
2 1 0 0 1 2 2 3 3 4
1 0 1 2 3 4 5 6 7 8

���
���a

b
1 2 3 4 5 6 7 8 9

Table 2: Sprague-Grundy values GG(a, b) for a, b ≤ 9
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Figure 2: The moves in Grossman’s game for a ≤ b ≤ 5
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Corollary. If 0 < a < b, let a0 =
⌊

b
a

⌋
and set

λ1 =
a0 +

√
a2

0 + 4

2
, λ2 =

a0 −
√
a2

0 + 4

2
and xn =

λn+2
1 − λn+2

2

λn+1
1 − λn+1

2

,

for n = 0, 1, 2, . . . . If a0 > 1 and b/a = xn for some n ∈ N, then

G(a, b) =

{
a0 : if b

a
< λ1,

a0 − 1 : otherwise.

while if a0 = 1 or b/a is not equal to xn for any n ∈ N, then

G(a, b) =

{
a0 : if b

a
> λ1,

a0 − 1 : otherwise.

Notice that from the above corollary and Nivasch’s formula for GG(a, b),
we see that G(a, b) and GG(a, b) differ by at most one. In fact, one has:

Theorem 2. For 0 < a < b, suppose that b/a has continued fraction ex-
pansion [a0, a1, . . . , an], and that b′/a′ is the rational number with continued
fraction expansion [a0, a1, . . . , an + 1]. Then G(a, b) = GG(a′, b′).

Remark 1. Theorem 1 may be regarded as an extension of [8, Theorem 1]
and [7, Theorem 3], which give the losing positions of Grossman’s game in
terms of continued fractions. Euclid can be played on the Stern-Brocot and
Calkin-Wilf tree in the same way that Grossman’s game is treated in [9] and
[7] respectively.

Remark 2. If one identifies the positions in the game Euclid with the cor-
responding continued fraction expansions [a0, a1, . . . , an], then each move
amounts to a reduction in the actual first term. Regarding the integers
ai as numbers of counters, one can think of Euclid as a game of Nim in which
one may only take counters from the leftmost pile. This game was studied by
K.T. Tan [14] and reinvented by Lionel Levine [10] who called it Serial Nim.
Thus Euclid is equivalent to Serial Nim. In particular, Theorem 1 can be
deduced directly from [10, Prop. 5.1] which follows by the continued fraction
based method outlined in [9].
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Remark 3. Theorems 1 and 2 show that Grossman’s game GG(a, b) can be
read from the continued fraction expansion of b/a. Indeed, if b/a has contin-
ued fraction expansion [a0, a1, . . . , an], then one obtains

GG(a, b) =

⌊∣∣∣∣ ba − a

b

∣∣∣∣⌋ =

⌊
b

a

⌋
−

{
0 : if I(a, b) is even,

1 : otherwise,

except in the special case where a0 = a1 = · · · = an, in which special case,

GG(a, b) =

⌊∣∣∣∣ ba − a

b

∣∣∣∣⌋ =

⌊
b

a

⌋
−

{
0 : if I(a, b) is odd,

1 : otherwise.

Combining Theorem 1, Nivasch’s formula and Remark 3, we deduce:

Theorem 3. For 0 < a ≤ b, suppose that b/a has continued fraction expan-
sion [a0, a1, . . . , an]. Then G(a, b) =

⌊∣∣ b
a
− a

b

∣∣⌋ unless a0 = a1 = · · · = an, in
which special case, G(a, b) =

⌊∣∣ b
a
− a

b

∣∣⌋+ (−1)n.

2. The proof of Theorems 1 and 2

Notice that in both Euclid and Grossman’s game, the moves do not alter
the GCD of the entries of the positions. It follows that we may assume
without loss of generality that the GCD is one. Thus, the position (a, b) is
completely determined by the fraction b/a, or equivalently by the continued
fraction expansion of b/a. So, in the proofs we give below, we identify the
positions with their associated continued fraction expansion. Notice that in
both games, from a position [a0, a1, . . . , an] with n > 0, there are a0 possible
moves:

[a0, a1, . . . , an] 7→ [a0 − i, a1, . . . , an], for 1 ≤ i < a0,

and
[a0, a1, . . . , an] 7→ [a1, . . . , an].

From the position [a0] with a0 > 0, there are a0 possible moves in Euclid,
[a0] 7→ [a0− i] with 1 ≤ i ≤ a0, but in Grossman’s game only the moves with
i < a0 are permitted.

Proof of Theorem 2. Let S denote the set of finite continued fractions and
let SG = S\{[0]}. So we may identify S (resp. SG) with the set of positions
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with GCD one in the game of Euclid (resp. Grossman’s game). Consider the
map σ : S → SG defined by

σ : [a0, a1, . . . , an] 7→ [a0, a1, . . . , an + 1].

The map σ clearly commutes with the possible moves. Moreover, notice that
the terminal position in Euclid is [0], while in Grossman’s game, the terminal
position is [1]. So σ respects the terminal positions. The image σ(S) is the set
of continued fractions [a0, a1, . . . , an] where an ≥ 3 for n > 0 and a0 ≥ 1 for
n = 0. Notice that from every position in σ(S), all the possible moves lead to
positions in σ(S). Thus σ is a game isomorphism from S to σ(S). It follows
that the Sprague-Grundy value in Grossman’s game of σ([a0, a1, . . . , an]) is
the same as the Sprague-Grundy value in Euclid of [a0, a1, . . . , an]. This
establishes Theorem 2.

Theorem 1 can be established in several ways. One could use Theorem 2
and adapt ideas from [11]. Alternately, one could induct on the length of the
continued fractions, using ideas from [8]. Instead, we prefer to give a direct,
self-contained proof.

Proof of Theorem 1. Let I and G be the functions defined in the statement
of Theorem 1; by abuse of language, we will write I(p) and G(p) for their
values at a position p = [a0, a1, . . . , an]. We must establish the following two
defining properties:

1. For every move p 7→ q, we have G(q) 6= G(p).

2. If G(p) > 0, then for all integers k with 0 ≤ k < G(p), there exists a
move p 7→ q such that G(q) = k.

In the following we will make repeated use of the following obvious fact:
if p = [a0, a1, . . . , an] and I(p) is odd, then a0 ≤ a1; indeed, if a0 > a1, then
we would have I(p) = 0. Similarly, if I(p) is even then a0 ≥ a1.

To establish (1), suppose we have a move p 7→ q with G(q) = G(p). First
suppose that q = [a0− i, a1, . . . , an] for some 1 ≤ i < a0. From the definition
of G, it is clear that necessarily i = 1, I(p) is odd and I(q) is even. As I(p)
is odd, a0 ≤ a1, and as I(q) is even, a0 − 1 ≥ a1. Hence a0 ≤ a1 ≤ a0 − 1,
which is impossible. So we may assume that q = [a1, . . . , an]. At first sight,
as G(q) = G(p), there are three possibilities:

(i) a0 = a1 − 1 and I(p) is even and I(q) is odd,
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(ii) a0 = a1 + 1 and I(p) is odd and I(q) is even,

(iii) a0 = a1 and I(p) and I(q) have the same parity.

But case (i) is impossible, since a0 ≥ a1 when I(p) is even, case (ii) is
impossible since a0 ≤ a1 when I(p) is odd, and case (iii) is in contradiction
with the definition of I.

To establish (2), suppose that 0 ≤ k < G(p). First suppose that I(p) is
odd, so G(p) = a0 − 1. Consider the position q = [k + 1, a1, . . . , an]. Since
I(p) is odd, a0 ≤ a1. In particular, k + 1 < a1 and thus I(q) = 1. It follows
that G(q) = k, as required. So it remains to treat the case where I(p) is
even. In this case, G(p) = a0 and a0 ≥ a1.

We first treat the situation where k = 0. Assume for the moment that
a0 > 1. Consider q = [1, a1, . . . , an]. Notice that we may assume that
I(q) is even, since otherwise G(q) = 0, as required. In particular, we have
a1 = 1. Let q′ = [a1, . . . , an]. But if I(q) is even, then I(q′) is odd and hence
G(q′) = a1 − 1 = 0, as required. Similarly, if a0 = 1, then as I(p) is even,
we have a1 = 1, and since I(p) is even, I(q′) is odd and G(q′) = 0. This
completes the case k = 0.

Now suppose that 0 < k < G(p) and let q = [k, a1, . . . , an]. If I(q) is
even, then G(q) = k, as required. So we may assume that I(q) is odd and
thus k ≤ a1. In this case, we have G(q) = k − 1. Let q′ = [k + 1, a1, . . . , an].
If I(q′) is odd, then G(q′) = k, as required, so we may assume that I(q′) is
even, and therefore k+1 ≥ a1. Thus k+1 ≥ a1 ≥ k. Hence, either k+1 = a1

or k = a1. Consider q′′ = [a1, . . . , an]. If k = a1, then as I(q) is odd, I(q′′) is
even, and hence G(q′′) = a1 = k, as required. Finally, if k + 1 = a1, then as
I(q′) is even, I(q′′) is odd, and hence G(q′′) = a1 − 1 = k, as required.

3. The proof of the Corollary

Let 0 < a < b and suppose that b/a has continued fraction expansion
[a0, a1, . . . , an]. So a0 =

⌊
b
a

⌋
. First suppose that the ai, for i = 0, . . . , n,

are not all equal. Let λ1 denote the number with constant infinite continued

fraction expansion [a0, a0, a0, . . . ]; one easily verifies that λ1 =
a0+
√

a2
0+4

2
. It

is well known and easy to see that b/a > λ1 if and only if I(a, b) is even. So
Theorem 1 gives

G(a, b) =

{
a0 : if b

a
> λ1,

a0 − 1 : otherwise.
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Now consider the case where the ai, for i = 0, . . . , n, are all equal. Since
our convention is that an > 1, we have a0 > 1. Notice that by definition,
I(a, b) is even if and only if n is even. Let xi denote the rational number
with continued fraction expansion [a0, a1, . . . , ai]. Writing xi = qi+1/qi, we
have by induction

xi+1 = a0 +
1

xi

=
a0qi+1 + qi

qi+1

,

and so the qi verify the recurrence relation qi+2 = a0qi+1 + qi, with q0 =
1, q1 = a0. Solving this recurrence relation gives

qi =
λi+1

1 − λi+1
2

λ1 − λ2

,

where λ1 =
a0+
√

a2
0+4

2
, λ2 =

a0−
√

a2
0+4

2
and so

xn =
λn+2

1 − λn+2
2

λn+1
1 − λn+1

2

.

Note that if n is odd, λn+1
2 is positive and so

λ1 > λ2 =⇒ λ1λ
n+1
2 > λn+2

2

=⇒ λ1(λ
n+1
1 − λn+1

2 ) < λn+2
1 − λn+2

2

=⇒ λ1 <
λn+2

1 − λn+2
2

λn+1
1 − λn+1

2

= xn.

Similarly, if n is even, λ1 > xn. Thus, as I(a, b) is even if and only if n is
even, Theorem 1 gives

G(a, b) =

{
a0 : if n is even (i.e., if xn = b

a
< λ1),

a0 − 1 : otherwise.

Remark 4. Notice that deciding whether a/b = xn for some n is easy; it is
visible from the continued fraction expansion of b/a, as we saw in the above
proof.

Acknowledgement. We are indebted to the referee for his/her helpful com-
ments.
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