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Abstract

An interesting 2-adic property of the Stirling numbers of the second kind S(n, k)
was conjectured by the author in 1994 and proved by De Wannemacker in 2005:
(S(2" k) = da(k) — 1,1 < k < 2" It was later generalized to v,(S(c2",k)) =
dy(k) — 1,1 < k < 2" ¢ > 1 by the author in 2009. Here we provide full and two
partial alternative proofs of the generalized version. The proofs are based on non-
standard recurrence relations for S(n, k) in the second parameter and congruential
identities.

Keywords:  Stirling numbers of the second kind; congruences and divisibility;
Bernoulli numbers

1. Introduction

The study of p-adic properties of Stirling numbers of the second kind offers many
challenging problems. Let k and n be positive integers, and let dy(k) and vs(k)
denote the number of ones in the binary representation of k£ and the highest power of
two dividing k, respectively. Lengyel [5] proved that

1o (S(2" k) = dy(k) — 1 (1)

for all sufficiently large n (e.g., k — 2 < n), and conjectured that v,(S(2",k)) =
dyo(k) — 1, for all k:1 < k < 2" which was proved in

Theorem 1 ([3], Theorem 1). Let k,n € N and 1 < k < 2". Then we have

va(S(2", k) = da(k) — 1. (2)
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At the very heart of the proof, there is an appealing recurrence for the Stirling
numbers of the second kind involving a double summation

7\ (k—1)! . .
' () (k_j)!S(n,k:—z)S(m,j). (3)

The generalization of Theorem (1| and De Wannemacker’s proof can be found in [7].

Theorem 2 ([7]). Let c,k,n € N and 1 < k < 2", then

v (S(c2", k)) = dao(k) — 1. (4)

In this paper we use Kummer’s theorem on the p-adic order of binomial coeffi-
cients.

Theorem 3 (Kummer (1852)). The power of a prime p that divides the binomial
coefficient (Z) 1s given by the number of carries when we add k and n — k in base
p. In another form, v, ((Z)) _ nfpc%l(n) . kfpcg,l(k) _ n*kfpcg,l(nfk) _ dp(k)+dpl(3r:k)fdp(n)
with d,(n) being the sum of the digits of n in its base p representation. In particular,
vs ((})) = da(k) + do(n — k) — da(n) represents the carry count in the addition of k

and n — k in base 2.

We will also need

Theorem 4 ([3], Theorem 3). Let k,n € N and 1 <k <n. Then

va(S(n, k) = dy(k) — da(n). (5)

This can be proven by an easy induction proof. Note that in general,

Theorem 5 ([6]). For every prime p > 3 and integer k: 1 <k <n—1,

—dp(n) — (n = K)(p —2)

b1 + 1

vo(S(n, k) = @)

The main goal of this paper is to suggest alternative methods for proving 2-adic
properties of the Stirling numbers of the second kind. In Section [2] we discuss some
partial proofs of Theorem [2| while full proofs of Theorems [I| and [2| are presented in
Section [3] It is remarkable that both known proofs of Theorems [I] and [2] are based
on recurrence relations on S(n, k) in the second parameter such as and or its

generalization :
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2. Preliminaries and partial answers

In this section we provide alternative partial proofs of Theorem [2]for two sets of values
of k that are smaller than the full range {1,2,...,2"}. The proofs and how the tools,
identity (6]) and Theorem [§] are used seem to be new.

The two sets are defined by k < n and dy(k) < v5(k). Their respective cardinalities
are n and the n + 1st Fibonacci number F,,;. In fact, by counting all values k£ with
a fixed number s = dy(k) of ones in their binary representations (so that s < 4(k)),
we find that there are (”;s) such ks if s > 2 and (’11) powers of two otherwise. We get
that

[{k |1 <k<2" and ds(k) < vn(k)}|
=N+ )+ + () = Faife > 1

Let 7(k;p") denote the minimum period of the sequence of Stirling numbers
{S(n, k)}n>k mod p". Kwong [4] proved the following
Theorem 6 ([4]). For k > max{4,p}, n(k;p") = (p — 1)pN+e®)=2 yhere prW)~1 <
k<pP®, ie., (k) = [log, k.

Based on the periodicity property and Euler’s theorem we can obtain
Theorem 7 ([5], Theorem 2). Let ¢ and n be non-negative integers, with ¢ odd. If

1<k <n+2then va(klS(c2" k) =k —1, i.e., 1u(S(c2™, k)) = da(k) — 1.

The latter theorem can be proven in a slightly weakened form by replacing &£ <
n + 2 with £ < n as it is shown in the following

Proof. By the identity (cf. [, identity (188) on p. 496]),
N
Z“(d)k!S(E’ k’) = 0 mod N (6)
N
with any positive integers k and /N, and p denoting the Moebius p-function. Indeed,
we set N =2" n > k, and get that
E'S(2" k) — K\S(2" 7 k) = 0 mod 2". (7)

As above, by periodicity and Euler’s theorem, we know that v5(k!S(2",k)) = k—1 for
any sufficiently large n, and thus, by , we immediately have that it holds for any
n > k. This argument easily generalizes for S(c2", k) with any ¢ > 1 odd; although,
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there will be 2¢)*! terms of the form +k!S(c'2", k) or £k!S(c2"71 k) in @ where
¢ > 1is a divisor of ¢ and w(c) denotes the number of different prime factors of c.
The proof can be completed by an induction on w(c). ]

Another special case can be treated by the following theorem proved by Chan and
Manna [2] in a recent paper.

Theorem 8 ([2], Theorem 4.2). Let a,m, and n be positive integers with m > 3 and
n>a2™+ 1. Then

S(n,a2™) = a2™! (LnT_lJ —a2" - 1)

|5+ — a2m!
14 (—1) (2 —a2m 2 — 1
L W7 d2m. 8
L ( n_ggm-1 ) O ®)

This guarantees that we can determine 15(S(2", k)) for any k£ with at least as
many zeros at the end of its binary representation as the number of ones in it.

Theorem 9. Let k,neN and 1 <k <2" with max{3,d2(k)} < (k). Then
(S (2" k)) = do(k) — 1.

Proof. We replace n by 2" in Theorem [§ and write k as kK = a2™ with some integer
a > 0. We assume that m > 3 and m > ds(a), and k = a2™ < 2", ie, n > ng =
[log,(a2™)]. Without loss of generality, we can assume that a is odd and m = v,(k);
otherwise, we rewrite a2™ as a/2™ with a’ odd and m’ > m > dy(a). Both @ and
hold with @’ and m’ while n and ny are kept unchanged.

Now we prove that
217,71 _ a2m72 _ 1
S(2™ a2™) =
@ = (P00

) mod 2™ 9)

and

ve(S(2",a2™)) = dy(a) — 1 (10)
by applying Theorem . Note that L2712—_1J —a2™ 2 — 1 is even while LL;J —qa2m~!
is odd; thus, there is guaranteed at least one carry in the application of Theorem [3|to
the binomial coefficient of the first term in . This proves @ which can be further
evaluated by the last part of Theorem [3| In fact, we get that

vo(S(27,a2™)) = dy(2"F — a2™ ) + dy(a2™7F — 1) — dy(2" — a2™ % — 1)
=(n—no+ (la(a) — da(a) — va(a) + 1)) + (da(a) + va(a) — 1 +m — 2)
—(n—ng—1+(m—2)+1+ (lz(a) — da(a) + 1))
=dy(a)—1<m (11)
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with l3(a) = [log,(a)]. O

Note that the above proof does not require any induction (although the proof of
Theorem [§] uses induction). In addition, we can generalize the proof to obtain

Theorem 10. Let c,k,n € N and 1 <k < 2" with max{3,dy(k)} < (k). Then
1/2(5(02”, k‘)) = dg(k) — 1.

Proof. In fact, k = a2™ < 2" implies that the nonzero binary digits of ¢2" and a2™
avoid each other (perhaps with the exception of the rightmost one in 2" when a = 1
and c¢ is odd) and thus, can be easily revised:

va(S(e2™,a2™)) = do(c2" ™t — a2™ ) + dy(a2™? — 1) — da(c2" — a2m7? — 1)
= (n—ng+ (la(a) — da(a) — va(a) + 1) + da(c) + va(c) — 1)
+ (do(a) + va(a) — 1 +m — 2)
—(n—ng—1+(m—2)+ 1+ (lz(a) — da(a) + 1) + da(c) + 12(c) — 1)
=ds(a) —1<m

3. Main result: alternative proofs of Theorems
and 2

We now turn to another approach due to Agoh and Dilcher [I]. They developed an
alternative recurrence relation for S(n + m, k) which relates this quantity to terms
involving S(n, k’)S(m, k — k') by means of a single summation rather than a double
summation as in (3).

Theorem 11 ([1]). For r > max{ks, k2} + 2, we have that

S(ky+ky+2,7) = Ti(i—1)!(r—i—1)!S(k1+1,i)8(k2+1,r—i). (12)

i=1

]{31”{32!(7"— 1)'
(k1 + k2 + 1)!

The paper [I] also contains a generalization of this theorem to s > 2 factors in-
volving Stirling numbers on the right hand side in a summation with s —1 summation
indices. Theorem [11]is a special case with s = 2.
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We will use the generalization of tor > 1, cf. [I], identity (6)]. It includes a
correction term involving Bernoulli numbers

(k — 1()};(?;?;(; - 1)!S(k‘ +m,r) = ;(l —DI(r—i—1)!S(k,i)S(m,r — i)
k+m—1 |
+ (r —1)! X_: <(_1)m <l; : i) + (=1)* <7;’L_—11)> lﬁFkJrTm:JjS(j, r)y o (13)

with B, being the nth Bernoulli number.

Now we present an alternative proof of Theorem [I]

Proof of Theorem[1 We prove by induction on n. The base case with n = 0 is
trivial. We consider the equivalent form 15(k!S(2",k)) = k — 1 of identity (I)). Let
us assume that vo(k!lS(2%, k)) = k — 1 for any integers ¢ and k such that 1 <t <n
and 1 < k < 2'. We prove the statement for ¢ = n + 1. We write k in its binary
representation k = 2% + 292 + ... 4 20® with 0 < by < by < -+ < bgyr). We have
two cases according whether £ > 2" 4+ 1 or not.

Case 1. First let us assume that
2" < k< 2mt (14)

The assumption yields that by, ) = n except for k = ontl

We use Theorem [11] with k; = ky = 2" — 1, r > 2" + 1, and switching from the
notation r to k. After slightly rewriting , we obtain

N A ) — 1 " . " ,
(k—1)1S(2" k) = T ;i(k_i)z!se i) (k—0)1S(2" k—14). (1)

With N = 2""! the first factor on the right hand side of is
(N-1)! (N—l)N

o\ )2

2
and there is no carry in the addition of N/2 and N/2 — 1. This yields an overall
2-adic order of n for the whole expression.

We have two subcases. If k is odd then we note that i(k — ) in the denominator
of can decrease the 2-adic order, and the unique largest decrement results from
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setting ¢ or k — i to 2°2® . By the inductive hypothesis, the last four factors at the
end of contribute (i — 1) + (k —i — 1) = k — 2 to the 2-adic order. Hence, we get
that

vo(k(k — IS k) = va(k) + 1 — bayy + 1 + (K — 2)
:n+k:—1—bd2k—k—1. (16)

If kis even and k # 2" then the factor i(k — i) in the denominator of
decreases the 2-adic order the most if we set i or k — i to 2%2® which yields that the
other factor is an odd multiple of 2"2(®). No other pair (i, k — i) can reach this decre-
ment. If i = k/2 then the corresponding term occurs only once, and the decrement
is 2(vo(k) — 1) < bayk) + v2(k) — 2. Thus, the right hand side of changes, and we
obtain

va(KIS(2" k) = va(k) +n — (bayy + v2(k)) + 1+ (k — 2)
:n+k:—1—bd2k)—k—1. (17)

For k = 2""! since the factor i(k — i) decreases the 2-adic order the most if we set
both 7 and k — i to 20w ~1 = 2" we get

VQ(]C!S(Q“JFI, k)) = I/Q(k) —f- n — (bdg(k) — 1 + I/Q(k) — 1) —f- (k’ — 2)
:7’L—|—l€—bd2(k) =k—1.

Case 2. Now we assume that k£ < 2™ and have two subcases. First we discuss the
case with k < 2" provided that k is not a power of two then we consider the case in
which £ =2 m <n.

Since now k < 2™ we need the correction term in which leads to the revised

version of

n+l __ k-1
k(k — 1)1S(27 k) = k(én _ 1)1!2! )3 @'(kl_ IS(@"0) (k= )18k~ )

rite- S Y (M) 2 s )

by setting k and m to 2" and switching from r to k in . We proceed similarly to
and , but this time the correction term in will determine the exact 2-adic
order. Clearly, the factor (2;:11) in the correction term is odd for any j,k < j < 2",
by Theorem
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If & < 2" then bg,y < n — 1. If k is not a power of two then the right hand
sides of and become n + k — 1 — bg,) = k. Therefore, the first term on
the right hand side of contributes an integer multiple of 2% to . On the
other hand, the correction term of will guarantee that vo(k!S (2" k)) stays at
k — 1. Indeed, the 2-adic order of the jth term of the correcting sum is at least
(k= dy(k)) + 1+ (1 + vo(Bansr ) — (7)) + (da(k) — da(j)) = -+ (k — 1) + (1
v5(j) — d2(j)) = n+ (k— 1) — da(j — 1) by Theorem [d] and the fact that vo(B,) > —1.
For the smallest possible value we have that

min n+(k—1)—dy(j —1)=k—1 (19)

k<j<2n

taken uniquely at 7 = 2". In this case the two inequalities above become equalities
since v5(S(2", k)) = da(k) — 1 and vy(Ban) = —1. Thus, vp(k!S(2" k) =k — 1.

We are left with the subcases in which k is a power of two. The statement is
trivially true for £ = 1. If k = 2™ with 1 < m < n then by, = v2(k) = m and the
right hand side of changes to

va(k) +n — (bayy — 1+ va(k) — 1) + (k — 2)
=n—m+k>k

with maxy<;<p—1 v2(i(k — 1)) = bgy) — 1+ 1v2(k) — 1 and the unique optimum is taken
at i = k —1 = 2™ 1. For the correction term, applies again with the same
reasoning as above. O

We can generalize the above proof to obtain an alternative proof of Theorem
although it requires a modified version of inequality (5] of Theorem , cf. [7, Remark 2
and Theorem 6] in a somewhat relaxed form:

Theorem 12. For ¢ > 3 odd, we have

va(S(c2", k) > do(k) — 1, 1 < k < 271, (20)

Below, for any integer a > 1, we use the following simple fact that
dg((l — 1) = dg((l) -1+ Vg(a). (21)
This implies da(c2" — 1) = da(c — 1) + n and thus,

da(c2"T — 1) = do(c2" — 1) + 1 = dy(c) + a(c) + n. (22)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY (200x), #Axx 9

Proof of Theorem[3. We may assume that c is an odd integer, otherwise we can factor
¢ into a power of two and an odd integer, and k still satisfies 1 < k < 2". We use
induction on ¢ and n. Assume that ve(k!S(s2),k)) = k — 1,1 < k < 2!, for all
1 <s<cand 0 <t <n,and prove that it also holds for t = n + 1. Then we prove
that it also holds for the odd number s = ¢ + 2.

The base case with ¢ = 1 is covered by the above proof of Theorem [I} Let
us assume that ¢ > 3. Clearly, dy(c) > 2. The case with n = 0 is trivial since

5(S(c,1)) = 0. Similarly to (18], we get

" (e2n 1 —1)! “— 1 " . n :
k(k —1)1S(c2" k) = k (@ 1)!2 i i)Z!S(CQ ,1) (k—i)1S(c2™ k — 1)
i=1
(62n+1 o 1>' c2™ co2r — 1 Bc2"+17j .
]:

by setting k& = m = ¢2" and switching from r to k in . We will see that the
correction term in determines the exact 2-adic order. In fact, the first term’s
2-adic order is at least

ve(k) + (n — 1+ ds(c)) + k —2
) llogy k| +va(k) — 1, if k> 2is odd or even but not a power of two
2uy(k) — 2, if k> 2 is a power of two,

by and Theorem thus it is at least k. Note that the first term disappears if
k =1, and the statement v5(S(c2"™, 1)) = 0 is trivial.

If j is odd then the corresponding Bernoulli number Bn+1_; in the correction
term is 0. If j is even then we define A as the 2-adic order of the jth term, and
we have that

A= (k) + va((2" = 1)) — 215 ((c2" — 1)!)
+ (1 +da(j — 1) +do(c2" — j) — do(c2" — 1) — 1 —1a(c2™*! — ) + 12(S(4, k)
= (k‘ — dg(k‘)) +entt -1 — d2(02n+1 — 1) -2 (62" —1- dg(CQn — 1))
+(do(j — 1) + do(c2™ — 7) — da(c2™ — 1) — vo(2"T — §)) + 1a(S(4, k))
=k +dy(j — 1) +da(c2" — j) — va(c2" — j) +1a(S(4, k) — da()
=k —1+w(j) +do(c2" — j) — 12" — j) + (1u(S(J, k)) — da(k) + da(5))

by va(Beansi_;) = —1, (21), and (22).

Now we prove that the last quantity is at least kK — 1, and the unique value of j
that achieves this lower bound is j = ¢ mod 2!°¢2¢) j.e., when we remove the most
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significant binary digit of ¢. We set j = 29 with ¢ odd and k£ < j < ¢2" and
identify four cases according to the value of q.

If —n < ¢ < 0 then

A>k—14n+q+do(c27 =)= (n+q) >k

by and since ¢ # 279, i.e., j # c2".

If g=0,1ie., 7 =27 then

A >k—14n+dc—c)—n+ (dolk) — 1 — da(k) + do(c))
>k—1+do(c)—1>k

by Theorem [12]

If ¢ =1 then 2¢ < ¢ and

A =k—14n+1+dy(c—2)—w(c—)—(n+1)+ (=1 +ds())
:k—1+d2(c)—1+u2((;c,))—Vg(c—c’)zk—l

by the induction hypothesis as ¢ < c and 1 < k < 2" imply that 1,(S(c/2" k)) =
dy(k) — 1. It is easy to prove, e.g., by induction on the number of blocks of zeros
in the binary representation of ¢, that A can reach the lower bound k£ — 1 exactly
if ¢ is derived from ¢ by removing its most significant binary digit. By the way, if
¢ = c2loeel= with 0 < i < [logyc] — 1, then da(c) — 1415 ((,5)) — valc — ) is
equal to the number of ones in c2l°82¢) — ¢7,

If ¢ > 2 then by we get that
A>k—1+n+q+dyfc—2)—(n+1)>k—1+qg—1>k.

The proof of vy(k!lS(c2" k) =k — 1 for 1 <k < 2" and n > 0 is complete for c,
and now we can proceed with the next odd c. O
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