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A COMBINATORIAL IDENTITY AND THE WORLD SERIES*
TAMAS LENGYEL!

Abstract. In this note the author gives a simple probabilistic proof of a combinatorial identity by calcu-
lating the winning probability in the World Series. The winning probabilities and the expected length of the
championship series are given by the applications of the identity and its generalization.
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1. Introduction. We give a probabilistic proof of a classical combinatorial identity
and find the winning probabilities and the expected length of World Series-type games.
There are Teams A and B to play no more than 2n — 1 games to decide a champion.
Each single game ends in no tie. These rules apply to the World Series and the NBA
play-offs as well with n = 4. Suppose that in each game Team A (Team B) has a prob-
ability p (¢ = 1 — p) of winning and the outcomes of the games are independent. The
winner is the first team to collect n victories. The length of the series is denoted by the
random variable W, (p). The expected length, EW,, (p), of the series can be determined
by classical combinatorial or hypergeometric summation [2] if p = %. For short, let
EW, = EW, (2) The problem of determining EW, appears, for example, in [3, Ques-
tion 3.8.14, p. 162] in the context of the usual best 4 of 7 series. In this note we use
a simple method to calculate EW,(p). An asymptotlc formula is given for EW,, (p) in
identity (7). Some related results have been proven in [5].

We start with the classical combinatorial identity [2, (5.20), p. 167]

0 S("Hrr=r, @20

k=0

and prove it by calculating the probabilities of winning a particular championship series.
In this series the winner team must accumulate n + 1 victories. Assume that the two
teams are equally likely to win in each game, i.e., p = ¢ = 1. Let p(n + 1, k) denote the
probability that Team A becomes the champion after winning the n+ k+ 1st game, where
0 < k < n+ 1. In the first n + k games, Teams A and B accumulate n and k victories,
respectively, with probability a(n, k). We have a(n, k) = ("}*)2~(+k)_ Clearly, p(n +

1,k) = 5 a(n, k), therefore Team A wins with probability

n+k
2 n+1,k ( )2 (n+k),
@ }:p< )= ;0 '

) Either Team A or B wins; hence the winning probabilities must add up to 1, ie.,
Yhoo ("F)27 R = 1. O
With little extra effort we can calculate the expected length of the series by using
identity (1) again.
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THEOREM 1. The expected length, EW,, of the series is 2n (1 - (2:)2—2") ifp =
1
q=3
Proof. By the previous method, the series lasts n + k games with probability
("HETY)2-(ntk-1), We get

= n+k-—1
(3) EW,=> (n+ k)( )2—("+’°-1>
k=0 k

for the expected length of the series. We shall use the identity (n+k) ("*5 ™) = n("}¥)
to rewrite equation (3):

n—1 n
_ n+k\ _(ntk) _ n+ kY _(n+k 2n\ . _2n
EWn—2nZ( L )2 (n )—2n{2( L )2 ) — )2 .

k=0 k=0

By identity (1), it follows that the expected value is 2n (1 - (2:)2‘2") . 0

For example, if n = 4 then we get 8(1 — &%) = 5.8125 games on the average.
In general, EW,, is asymptotically 2n {1 — \/—:r=n}. Hence, at the end of the series, the

winning team will collect n victories while the other one wins asymptotically n — cv/n
games, on the average, where ¢ = 2/+/m. Note that if the number N of games is fixed in
advance then after N' games the two teams will be asymptotically cy/N/2 victories apart
(cf. [1, Problem 35, p. 241] or [6, Putnam 1974, Problem A-4]), on the average. In fact,
if N ~ EW, then the expected number of victories apart is asymptotically c\/n as we
noted.

We generalize Theorem 1 for arbitrary p.

THEOREM 2. For the probabilities, P and PB, of winning the championship by Teams
A and B, respectively, and the expected length, EW, (p), of the series

a_ ., (p—q) o (2K,

@ Pr=p+ O30 5 () e
n—1
) P2 =g+ 22 5 (25 oo,
¢+ = ; (k) pq
and
_ 2n . (P—9)? < (2K
©  EWap)=1n {1-(n)(pq) —Tp;;(k)(pq)k}.
Remark. 1t follows from identity (6) that

(7) JLH;'%(EW‘"' (%) —EWn(p)) - lp_ql (ip; |p_QI),

since 3 (3*)z* = 1//T—4a, for |z| < 7 (see [2]). Similarly, identities (4) and (5
imply that for p > ¢, lim, . PA =1landforp < ¢, limp PB=11fp=gq= %
then PA = P2 = 1. Notice that the limit in identity (7) can be expressed as 1 — 3 if

1
P23
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Proof. The probability that the series ends at the finish of the n + kth game is
g
(n+::—1) (pnqk qnpk) and

n—1 n—1
+k-1 n+k—1
PA — 0 n k PB — k.
npl;(k)qana,,q,;kp

Now P2 + P2 = 1 which gives a generalization of identity (1). Obviously, PA = p and
PE = q. Similarly to the proof of Theorem 1,

n—1 n—1
_ n n+k k n n+k k
(8) EW,(p) = np k§=0( k )q + ng k§=0( k )p-

Let EW/ denote the first part of the sum on the right-hand side of equation (8). The
simple relation between P2 and EWA is given by

: n 2n
W = 2P -n (2 0
which implies that
PA, PB 2
©) EW(p) =n { ety Pt g () gy

We obtain the relation (4) for P2 by taking the difference P4, , — PA. This step is
motivated by a similar one used in the solution to Problem 44, “winning an unfair game,”
in [4]. The difference expresses the advantage of Team A in the terms of the probability
of winning the championship if two extra games are played. The status of Team A as a
winner or loser does not differ at the end of the extended series from that in the original
series if Team A has already won more than n games (winner) or less than n — 1 games
(loser) in the first 2n — 1 games. The difference comes from two sources. The probability
that Team A becomes the champion after winning only n— 1 of the 2n— 1 games and then
winning the next two games will increase the winning probability. On the other hand,
Team A will finish as the loser if it has accumulated exactly n victories and then it falls
behind by losing the last two games. We use the identity (2*) = 2(>"~!) and obtain

n
2n-1 _ 2n—-1 _ 2n—1
Prf+1—Pf=p2(n_l)p" lq"—q2<n_1)p"q" 1=(p—q)<n_1)(1m1)"
_pP—q 2n n

- This yields relation (4) and identity (5) follows similarly. Since (1 — (p/q + q/p)/2) =
—(p — q)%/2pq, the formula (9) implies identity (6). 0
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