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THE MOMENTS OF THE NUMBER OF CYCLES OF
A RANDOM PERMUTATION BY SIMPLE
ENUMERATION

By T.LENGYEL
Occidental College, Los Angeles

SUMMARY. We present a new proof for the Poisson limit distribution of the number of
fixed points of a random permutation. Despite the combinatorial nature of the proof, it does not
involve the use of inclusion-exclusion principle, cycle representation of permutations, number of
derangements, rewriting formulas for the distribution of the fix points, generating functions, or
transformation formulas between moments. The proof is elementary in terms of enumeration and
based on the notion of Stirling numbers. It requires some familarity with the moment generating
function of the Poisson distribution and the Fréchet-Shohat moment convergence theorem. The
method is extended to the distribution of the number of k-cycles of an n-element set, for k < n.

1. Introduction

Let X,, denote the number of r-cycles of a random permutation over an
n-element set [n] = {1,2,...,n}. We use the convenient X, = X, notation
for the number of fixed points. Let p,(k) denote the probability that a random
permutation over [n], for short a random n-permutation, has k fixed points,
ie, pa(k) = P(X = k). We find the k-th moments My(n) = E(XF) and
My (n,r) = E(X},) without using any inclusion-exclusion, inversion or moment
transformation formula or determining the related probabllltleﬁ.

The convergence of the distribution of X,, to the Poisson distribution is well
known. The limiting distribution can be determined by using formulas for p, (k).
We take a different approach and find the limit distributions (Corollary) based
on a moment convergence theorem by calculating the moments (Theorems 1
and 2). Although we might encounter difficulties for other distributions, in this

case we can give a simple interpretation of the moments without determining
the explicit probabilities.
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We note that Takacs (1991) has recently proved a general convergence theo-
rem based on the binomial moments which in addition yields an ezplicit formula
for the limit distribution. We will use neither binomial nor factorial moments.

In this paper S(n, k) denotes the Stirling number of the second kind, i.e, the
number of partitions of n distinct elements into k& non-empty subsets and ()
stands for z(z — 1)...(z — k+ 1) where k£ = 1,2,... The Bell number, w(n), is
defined as the number of all partitions of [n], i.e., w(n) = Y }_, S(n, k).

2. The number of fixed points and k-cycles
of a random permutation

The problem of analyzing p,(k) and the expected value of the number of
fixed points of a random n-permutation is probably originated in card games.
We count the matches when the cards of two well-shufled decks are matched
against each other. The first solution goes back to Montmort who found a
recurrence relation for the number of matches in 1708. The problem has been
generalized in many ways and counting unrestricted and restricted permutations
of an n-element set has been a popular area of research (e.g., Penrice (1991)
and Takécs (1981)).

The probability p,(k) is usually determined by the inclusion-exclusion prin-
ciple (cf. Feller (1968), Graham et al. (1988), and Wilf (1990)). Notice that
Pn(n — 1) = 0. It also follows that p,(0) = Yio(-1)E = e+ 0o@/nl)
and p,(k) = %!Z::ok(——l ‘1, which yields the asymptotic formula pnlk) =
L+ O(Zn—-llcﬁ)’ for every fixed k (see e.g., Feller (1968)). The asymptotic be-
havior of p,(k) can be derived by the method of generating functions (cf. Wilf
(1990)) too. Roughly speaking, p, (k) conforms to the Poisson law with param-
eter 1 as n tends to co. Similar results hold for the distribution of X We
give an alternative proof of these facts based on the moments.

Observe that the probabilities are nearly independent of n. It turns out that
for n > 2, M;(n) = E(X,) = 1 and M3(n) = E(X?) = 2 do not depend on n.
In general, one can calculate M;(n) by

THEOREM 1. The moments My(n) = E(XF) of the number of fized
points of a random n-permutation are

_ w(k)) if k <n
Min) = { " S(k,i) if k>n.
Note that for every n, the first n moments of X, do not depend on n. We

set My(n) =1(n > 1).

ProOOF. Let Y; be the indicator random variable of the event that element
i is a fixed point of the random n-permutation, i.e.,
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Y = 1, ifelement ¢ is a fixed point,
71 0, otherwise.

Clearly, the random variables Y; are identically distributed though they are not
independent. For the number of fixed points X,, we get X, = Yo, Y. We
evaluate M;(n) = E(X}) by expanding the right hand side of this equation
using the multinomial expansion. That is,

Myn)=EB((Vi+ Y2 +...+Y)) =Y (zl k ) 020 75008 )
Na -

where the summation extends over the set A, of n-tuples (21,%2,...,1,) with
nonsnegative integer coordinates provided } 7. =1t = k.

Letl= l(41,13, . .. ,1,) denote the number of positive exponents in Y" Y" LY
Le, I =|{jli; > 1}| Clearly, 1 <! < min{k,n}. Notice that Y = Y 1f c 9& 0.
One can easily see that Y"Y" Y and 1Ya ... YiG i, i,) are identically dis-
tributed. There are ( I ) ways to chose the | variables with a given set of positive
exponents. For Y1Y;...Y; = 1 if and only if the n-permutation has the first ! el-
ements of [n] as fixed points, thus E(YY;...Y}) = ("—;.l—)' Let ;" denote the set
of l-tuples (i1,y,...,i) such that 3; > 1, for all ,1 < j <1, and Y, i; = k.
It follows that

woE ()OS R

Now observe that

2, (i1 -l?.i,) = S(k, )l

A/"I'
for the number of partitions of a k-element set into ! non-empty blocks is counted
on both sides. The order of the blocks is taken into account but not the order

of the elements inside the blocks. We find that M (n) = Y"™™*"} g(k 1), The
proof is now complete. 0

REMARK. The previous statement can be derived by using factorial mo-
ments for expressing My(n) = E(X%),k > 1. In fact, the transformation for-
mula between central and factorial moments, X* = Ele S(k, )(X):, becomes
B(X*) =5, S(k, DE((X)) = Yom™En} gk, 1) after taking the expected val-
ues. The proof of the formula and the calculation of E({(X)1), however, are
usually based on the combinatorial theory of the Stirling numbers of the sec-
ond kind and the number of derangements Our proof completely avoided this
approach. Nonetheless, the identity =¥ = yOF 1Sk, D(xh, k > 1, follows eas-

ily when the moment enumeration method is applied to bmomlally distributed
random variables.
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We can generalize the previous theorem and obtain

THEOREM 2. The moments Mi(n,r) = E(X},) of the number of r-cycles
of a random n-permutation are )

B E:— S(k, i)/, if k<[n/r]
Mi(n,r) = { E("/' S(k,i)/r, if k> [n/r].

We note that the k-th moment of the Poisson distribution with parameter

=1/r is 35, S(k,i)/r*. Theorem 2 and the Fréchet-Shohat moment conver-
gence theorem (see e.g., Moran (1968)) implies that

COROLLARY. The number of r-cycles of a random n-permutation has
Poisson limit distributions with parameter 1/r.

PRrROOF OF THEOREM 2. The proof is based on the revised definition of
the indicator variables ¥;. We set N = (") and define Y;,i = 1,2,...,N, as
the indicator variable of the event that the i-th element in the list of r-element
subsets of [n] forms an r-cycle of the random n-permutation. That is,

1, if the i-th r- element subset of [n] is an r- cycle,
Yi= .
0, otherwise.
Letl = l(4y,4s,..., in) denote the number of positive exponents in YL YR Y,f," .
Incidentally, Yl", Y. .. Y is zero or one, and it is one if and only if the corre-
sponding [ r—element subsets form disjoint r-cycles of the permutation. Provided
the subsets are disjoint, there ((r — 1)!)!(n — Ir)! ways of forming the required
r-cycles and completing the n-permutation. We can select the ! disjoint subsets

in (r " 7') /U ways (with I copies of r under n), and there are S(k, )l! ways of

making l-tuples with positive coordinates of sum &. In other words, the multi-
nomial expansion of E (Y1 + Y3 + ... + Y)¥) has S(k, )I! terms Y'Y ... Y¥,
with [ positive exponents, each contributing

n L((r=))(n=ir)t 1
(r...r)ﬁ n! A

to Mi(n,r). Summation on |,1 < ! < min{k,[n/r]}, yields the identity for
Mi(n,r). O
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