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Abstract

We show that the sequence {k!S(n,k)}∞
n=1 formed from the Stirling Numbers of

the Second Kind S(n,k) is a Newton–Euler sequence for all k ≥ 1. This property guar-

antees some alternative proofs of congruential properties. Associated Stirling numbers

do not form Newton–Euler Sequences, thus, we use other techniques to obtain some

divisibility properties. We also derive a new ordinary generating function of the asso-

ciated Stirling numbers {Sr(n,k)}∞
n=1 that relies on a recurrence in k.
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1. Introduction

The Stirling Number of the Second Kind S(n,k) is defined as the number of ways to partition

a set of n things into k nonempty subsets while the r-associated Stirling Number of the

Second Kind Sr(n,k), r ≥ 1, is a similar count with the extra stipulation that each of the k

subsets has at least r elements.

To derive some congruential properties of these Stirling numbers we prove in Theorem 2

that the sequence {k!S(n,k)}∞
n=1 forms a Newton–Euler Sequence, cf. [9] and [3].

First we introduce the notion of Newton–Euler Pairs and Newton–Euler Sequences.

Section 1 is devoted to some basic facts regarding Newton–Euler Pairs and contains one of

the main results Theorem 2 while Section 2 has the proofs. Section 3 deals with r-associated

Stirling Numbers of the Second Kind. Subsections 3.1 and 3.2 are devoted to the cases

with r = 2 and r > 2, respectively, and some 2-adic divisibility properties are presented or

conjectured on the underlying quantities and their differences (cf. Theorem 8, Corollary 1,

and Conjectures 1 and 2). Some special cases with k = 2,3,4 if r = 2 and k = 2,3 if r = 3

are fully explored and explained, e.g., Remark 3. In Subsection 3.3 we derive a recurrence

in k for the ordinary generating function Cr,k(x) = ∑∞
n=0 Sr(n,k)xn = ∑∞

n=kr Sr(n,k)xn of the

associated Stirling Numbers of the Second Kind {Sr(n,k)}∞
n=1, cf. (3.21) and Theorem 10.

Note that we could locate only the exponential generating function of these quantities in the

literature.

The following definitions, statements, lemma and theorem are from [9].
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Definition 1. If {an}
∞
n=1 and {bn}

∞
n=1 are two sequences satisfying a1 = b1 and bn +

a1bn−1 + · · ·+an−1b1 = nan (n > 1), then we say that (an,bn) is a Newton–Euler Pair.

We implicitly assume that n ≥ 1 when referring to (an,bn) as a Newton–Euler Pair.

Remark 1. For each sequence {an}
∞
n=1 there is a unique sequence {bn}

∞
n=1 such that

(an,bn) is a Newton–Euler Pair, and vice versa. If the sequences {an}
∞
n=0 and {bn}

∞
n=0

satisfy the relation ∑n
k=0 akbn−k = nan(n = 0,1,2, . . .) and a0 6= 0 then (an/a0,bn) is a

Newton–Euler Pair.

Definition 2. If (an,bn) is a Newton–Euler Pair and an ∈ Z for all n = 1,2,3, . . . then we

say that {bn} is a Newton–Euler Sequence.

Lemma 1. Let {bn} be a Newton–Euler Sequence. Then clearly, bn ∈ Z for all n =
1,2,3, . . ..

Theorem 1. (Theorem by Du, Huang, and Li, cf. (1.1) in [9], also see [3]) For the {bn}
Newton–Euler Sequence we have that

∑
d|n

µ(d)b n
d
≡ 0 (mod n) and bn ≡ b n

p
(mod pt)

where µ is the Möbius function and p is a prime such that pt | n.

One of our main results is

Theorem 2. The sequence {k!S(n,k)}∞
n=1 with any fix k ≥ 1 is a Newton–Euler Sequence.

Thus Theorem 1 applies and we get

Theorem 3. We have that

∑
d|n

µ(d)k!S
(n

d
,k

)

≡ 0 (mod n)

and

k!S(n,k)≡ k!S

(

n

p
,k

)

(mod pt). (1.1)

where µ is the Möbius function and p is a prime such that pt | n.

Note that the first congruence in Theorem 3 was first derived in [7, Proposition 4.15]

by a different approach. We also add that Theorem 3 can be used (cf. (6) in [6]) to obtain a

partial proof of the general Theorem 4. Let k and n be positive integers, and let d2(k) and

ν2(k) denote the number of ones in the binary representation of k and the highest power of

two dividing k, respectively.

Theorem 4. (Theorem 2 in [6]) Let c,k,n ∈ N and 1 ≤ k ≤ 2n, then

ν2 (S(c2n,k)) = d2(k)−1. (1.2)

In order to prove Theorem 2 we need some preparations.
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Theorem 5. (Theorem 2.1 in [9]) Let {an} and {bn} be two sequences. If A(x) = 1 +

∑∞
n=1 anxn and B(x) = ∑∞

n=1 bnxn then the following statements are equivalent:

(i) (an,bn) is a Newton–Euler Pair.

(ii) B(x) = xA′(x)/A(x).

(iii) A(x) = e
R x

0
B(t)

t dt .

We will also need the rational expansion theorem for distinct roots.

Theorem 6. (cf. p340, [4]) If R(z) = P(z)/Q(z), where Q(z) = q0(1−ρ1z) . . .(1−ρlz) and

the numbers (ρ1, . . . ,ρl) are distinct, and if P(z) is a polynomial of degree less than l, then

R(z) = −
l

∑
k=1

ρkP(1/ρk)

Q′(1/ρk)

1

1−ρkz
. (1.3)

2. Proofs

Proof of Theorem 2. We set

B(x) =
∞

∑
n=k

k!S(n,k)xn.

Note that

B(x) =
k!xk

∏k
j=1(1− jx)

(2.4)

according to the well-known “vertical” rational generating function [1, Theorem C, p207].

By Lemma 1, the case (ii) of Theorem 5, and Theorem 1 it is sufficient to prove that the

generating function A(x) = ∑∞
j=0 a jx

j has integral coefficients a js. By Theorem 5 we know

that

B(x) = xA′(x)/A(x) (2.5)

implicitly provides us with the definition of A(x). We derive by (2.4) and (2.5) that

k!xk−1

∏k
j=1(1− jx)

= (lnA(x))′.

With l = k,P(x) = k!xk−1,Q(x) = ∏k
j=1(1− jx), and ρ j = j, and by Theorem 6 on partial

fraction decomposition, it follows that

k!xk−1

∏k
j=1(1− jx)

=
k

∑
j=1

(

k
j

)

(−1)m( j)+1 j

1− jx

with m( j) = j + 1 if k is even and m( j) = j otherwise. Integrating on the right hand side

leads to
k

∑
j=1

(

k

j

)

(−1)m( j) ln(1− jx) = ln

(

n

∏
j=1

(1− jx)(−1)m( j)(k
j)

)

,
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and thus, by A(0) = 1, we conclude that

A(x) =
k

∏
j=1

(1− jx)(−1)m( j)(k
j).

This already guarantees that an ∈ Z for all n = 1,2,3, . . . which by way of Lemma 1 yields

that bn ∈ Z for all n = 1,2,3, . . .. The proof is now complete.

By the way, the following facts also hold.

Lemma 1. For 1 ≤ j ≤ 2k−1, we have that

a j =
k!S( j,k)

j

is an integer.

Proof. The proof can be derived from the proof of Theorem 2. It follows that the generating

function A(x) has integral coefficients, and it is easy to see that the coefficients with small

indices are a0 = 1 and a j = k!S( j,k)/ j for j = 1,2, . . .2k−1 since b j = k!S( j,k) = 0 for

j = 0,1, . . .,k−1.

3. Associated Stirling Numbers of the Second Kind

Now we consider the r-associated Stirling Numbers of the Second Kind, Sr(n,k), r ≥ 1,

with a fix k ≥ 1. The case with k = 1 is trivial and we omit it.

Our first observation is that {k!Sr(n,k)}∞
n=1 does not seem to form a Newton–Euler Se-

quence for small values of k. Nevertheless, for the Newton–Euler Pair (an,bn = k!Sr(n,k))
we have

Lemma 2. For r ≥ 2 and 1 ≤ j ≤ (r +2)k−1, we have

a j =
k!Sr( j,k)

j

Proof. Similarly to the proof of Lemma 1, we also see that if r ≥ 2 then a0 = 1 and a j =
k!Sr( j,k)/ j for j = 1,2, . . ., (r +2)k−1.

We note that it is easy to find the exponential generating function of the r-associated

Stirling Numbers of the Second Kind Sr(n,k)

∞

∑
n=0

Sr(n,k)
xn

n!
=

(

ex −∑r−1
i=0

xi

i!

)k

k!
=

(

∑∞
i=r

xi

i!

)k

k!

but this fact does not seem to help with the study of divisibility properties while the ordinary

generating function appears to be more useful. First we mention some recurrences for these

numbers and then move towards 2-adic divisibility properties. With n ≥ kr we have

Sr(n,k) =

(

n−1

r−1

)

Sr(n− r,k−1)+kSr(n−1,k) (3.6)
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and

Sr(n,k) =
n−r

∑
i=(k−1)r

(

n−1

i

)

Sr(i,k−1). (3.7)

We note that (3.6) and (3.7) are straightforward relations. We have the following lemma.

Lemma 3. For n ≥ kr, we have

kSr(n,k) =
n−r

∑
i=(k−1)r

(

n

i

)

Sr(i,k−1). (3.8)

Proof. To prove (3.8), by subtracting (3.7) from (3.8), we consider the equivalent statement

(k−1)Sr(n,k) =
n−r

∑
i=(k−1)r

(

n−1

i−1

)

Sr(i,k−1)

and rewrite Sr(i,k−1) by (3.6) as

(

i−1

r−1

)

Sr(i− r,k−2)+(k−1)Sr(i−1,k−1).

With the identity
(

n−1
i−1

)(

i−1
r−1

)

=
(

n−1
r−1

)(

n−r
i−r

)

and a few more steps, we can derive (3.8).

Now we find a lower bound on the 2-adic order of the Stirling numbers of the second

kind. The case with r = 1 appeared in

Theorem 7. (Theorem 3 in [2]) Let n,k ∈ N and 0 ≤ k ≤ n. Then ν2 (S(n,k)) ≥ d2(k)−

d2(n).

We can generalize this to associated Stirling numbers of the second kind.

Theorem 8. Let n,k ∈ N and 0 ≤ k ≤ n. Then

ν2 (Sr(n,k))≥ d2(k)−d2(n)

and equivalently,

ν2 (k!Sr(n,k))≥ k−d2(n).

Proof. Due to (3.8), the proof of Theorem 7 by induction on n can be easily adapted to

Theorem 8 with r ≥ 1.

Therefore, we can derive the following lower bounds from Theorem 8.

Corollary 1. Let c,k,n ∈ N and 1 ≤ k ≤ 2n, then

ν2 (Sr(2n,k))≥ d2(k)−1 (3.9)

and

ν2 (Sr(c2n,k))≥ d2(k)−d2(c).
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Remark 2. Note that (3.9) is the best possible lower bound according to Conjecture 1 of

Subsection 3.2.

Our goal is to prove a statement similar to that of Theorem 4. We recall that the original

approach in proving (1.2) relied on the inclusion–exclusion principle based relation

k!S(n,k) =
k

∑
i=0

(−1)i

(

k

i

)

(k− i)n (3.10)

in [1, (1b), p204] combined with Euler’s theorem which helped in establishing the fact that

ν2(k!S(c2n,k)) is constant for any large enough n. However, if r ≥ 2 then the inclusion–

exclusion principle leads to a more complicated relation to which Euler’s theorem cannot be

directly applied. We will revisit this approach in Subsections 3.1 and 3.2 in some particular

cases with k = 2,3,4 for r = 2 and k = 2,3 for r = 3, and in general.

3.1. The Case of r = 2

For r = 2, as a generalization of the generating function (2.4), the “vertical” generating

function was partially given as

∞

∑
n=0

S2(n,k)xn =
x2kΦk(x)

(1−x)k(1−2x)k−1 · · ·(1−kx)
(3.11)

in a slightly different form and explicitly determined for 1 ≤ k ≤ 4 in [10, identity (4.51)],

where Φk(x) is a polynomial in x with integral coefficients of degree k(k−1)/2. For exam-

ple,
∞

∑
n=0

S2(n,2)xn =
∞

∑
n=4

S2(n,2)xn =
x4(3−2x)

(1−x)2(1−2x)
.

To be more precise, based on [10], we have that

∞

∑
n=0

k!S2(n,k)xn =
∞

∑
n=2k

k!S2(n,k)xn = k!xkΨk(x) (3.12)

with the recursively defined

Ψ0(x) = 1,Ψk(x) =
kxΨk−1(x)+x2(Ψk−1(x))′

1−kx
,k = 1,2, . . .

which already guarantees the form (3.11) through partial fraction decomposition.

To test whether the sequence {k!Sr(n,k)}∞
n=1 forms a Newton–Euler Sequence we pro-

ceed as follows. By (3.12), we set

Bk(x) = k!xkΨk(x),

and

Ak(x) = e
R x

c Bk(t)/t dt
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with some c and Ak(0) = 1. (The latter criterion can be satisfied if we set c = 0 or normalize

by a0 = Ak(0).) Note that
(

xkΨk−1(x)
)′

= xk−1
(

kΨk−1(x)+x(Ψk−1(x))′
)

= xk−2(1−kx)Ψk(x),

thus,
Z

Bk(x)/xdx = k!

Z

xk−1 1

xk−2(1−kx)

(

xkΨk−1(x)
)′

dx

= k!

Z

x

1−kx

(

xkΨk−1(x)
)′

dx.

We found that the above sequence is not a Newton–Euler Sequence for k ≤ 9 by finding a

non-integer a j of the Newton–Euler Pair (an,bn = k!S2(n,k)). Numerical evidence suggests

that the smallest index j for which a j is not an integer is increasing with k and it makes the

testing computationally challenging.

Although we do not have congruences similar to (1.1) we can still address some di-

visibility properties. The sequences {k!S2(n,k)}∞
n=1 with different values of k are included

in [8], cf. columns of http://oeis.org/A200091. For instance, if k = 2, 3, and 4 then for

the coefficients of B2(x) = ∑2!S2(n,2)xn = 6x4 + 20x5 + 50x6 + 112x7 + 238x8 + 492x9 +
1002x10+. . . , B3(x)= ∑3!S2(n,3)xn = 90x6 +630x7 +2940x8 +11508x9+40950x10+. . . ,
and B4(x) = ∑4!S2(n,4)xn = 2520x8 +30240x9 +226800x10 + . . . we have that

2!S2(n,2) = 2n −2n−2,n ≥ 4, (3.13)

cf. http://oeis.org/A052515,

3!S2(n,3) = 3n−3∗2n−1(n+2)+3(n2 +n+1),n ≥ 6, (3.14)

cf. http://oeis.org/A224541 and http://oeis.org/A000478, and

4!S2(n,4) = 4n −4∗3n −4n3n−1 +3n(n+3)∗2n−1 +6∗2n −4n3 −8n−4,n ≥ 8, (3.15)

http://oeis.org/A224542, respectively. Note that (3.13)-(3.15) can be easily derived by the

inclusion–exclusion principle. It follows now that for n ≥ 4

ν2(2!S2(n,2)) = ν2(n+1)+1

and ν2(2!(S2(c2n+1,2)−S2(c2n,2))) = n+1 with c odd and n ≥ 2, and for n ≥ 6

ν2(3!S2(n,3)) =











2 if n ≡ 0,1 mod 8,

1 if n ≡ 2,3,6,7 mod 8,

ν2(3n +3(n2 +n+1)) otherwise,

and ν2

(

3!(S2(c2n+1,3)−S2(c2n,3))
)

= n with c odd and n ≥ 3. For n ≥ 8, we have

ν2(4!S2(n,4)) =























3 if n ≡ 0,3 mod 8,

4 if n ≡ 1 mod 8,

5 if n ≡ 2 mod 8,

ν2(4∗3n +4n3n−1 +4n3 +8n+4) otherwise,

and ν2

(

4!(S2(c2n+1,4)−S2(c2n,4))
)

= n+2 with c odd and n ≥ 3.
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Remark 3. The basic difference among these cases is that, from the point of view of 2-adic

valuation, the dominating terms in (3.13)-(3.15) have different forms. These terms are −2n,

3n, and −4n3n−1 for k = 2,3, and 4, respectively.

3.2. The Case of r > 2

We have only the special case with r = 3 and k = 2 that we could recognize in

[8], cf. http://oeis.org/A052516. In fact, one can easily derive the generating func-

tion ∑2!S3(n,2)xn = 20x6 + 70x7 + 182x8 + 420x9 + 912x10 + . . . , with the coefficients

2!S3(n,2) = 2n −n2 −n−2 for n ≥ 6. It follows that for n ≥ 6

ν2(2!S3(n,2)) =

{

1 if 4 | n,

ν2(n2 +n+2) otherwise,

and ν2

(

2!(S3(c2n+1,2)−S3(c2n,2))
)

= n with c odd and n ≥ 3. Also note that the

generating function is 2x6(6x2−15x+10)/((1−x)3(1−2x)), cf. http://oeis.org/A052516.

For r = k = 3 we get that 3!S3(n,3) = 3n−3∗2n−3(n2 +3n+8)+3/4(n4−2n3 +7n2 +
2n+4) as well as

ν2(3!S3(n,3)) = 2 if 16 | n,

and ν2

(

3!(S3(c2n+1,3)−S3(c2n,3))
)

= n− 1 with c odd and n ≥ 3. The corresponding

generating function is

6x9(360x6−2100x5 +5106x4 −6615x3 +4795x2 −1820x+280)

(1−x)5(1−2x)3(1−3x)
.

In case of a general r and k, we observe that

k!Sr(n,k) =
k

∑
i=0

k(r−1)

∑
t=0

ct,i

(

n

t

)

(k− i)n−t (3.16)

with integers ct,i = ct,i(r,k) by the inclusion–exclusion principle. If r ≥ 2 then this relation

is significantly more complex than in the case of r = 1 as given in (3.10). We have not

succeeded in using (3.16) to obtain ν2(k!Sr(c2n,k)). Nonetheless, we use it to obtain some

lower bound on ν2

(

k!(Sr(c2n+1,k)−Sr(c2n,k)
)

. We apply a lemma from [5].

Lemma 4. Let n,m ∈ N, and c ≥ 1 be an odd integer, then

ν2

(

(2m+1)c2n

−1
)

= n+2+ν2

((

m+1

2

))

. (3.17)

After further consideration, we observe that a general term in (3.16) has the form of

Cnu(k− i)n−t (3.18)

with integer u : 0 ≤ u ≤ t and a C such that Ct! is an integer, i.e., ν2(C) ≥ −ν2(t!) = −t +
d2(t). By taking the largest value of t we get that ν2(C) ≥ −k(r−1)+d2(k(r−1)). (Note
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that it simplifies to ν2(C) ≥ 0 if r = 1.) The form (3.18) holds true since (n)t =
(

n
t

)

t! is

a polynomial in n with degree t and integral coefficients. Now we consider the general

terms of the difference k!(Sr(c2n+1,k)− Sr(c2n,k)). If k − i = 2m + 1 is odd for some

integer m ≥ 0 then we get that A = C(c2n+1)u(2m + 1)c2n+1−t −C(c2n)u(2m + 1)c2n−t =

C(c2n)u(2m+1)c2n−t
(

2u(2m+1)c2n

−1
)

. If u = 0 then ν2(A) = ν2(C)+n+2+ν2

((

m+1
2

))

by Lemma 4. If u ≥ 1 then ν2(A) = ν2(C)+nu.

The following lower bound follows.

Theorem 9. Let n,k, r ∈ N and c ≥ 1 be an odd integer, then

ν2

(

k!(Sr(c2n+1,k)−Sr(c2n,k))
)

≥ n−k(r−1)+d2(k(r−1)).

We note that the exact 2-adic order can be determined if there is a unique 2-adically

dominant term (with u = 1), cf. Remark 3 if r = 2 and the cases with r = 3 when it is −n

if k = 2 and 3n/2 if k = 3, respectively. In Conjecture 2 we make a conjecture on the exact

value.

Further numerical experimentation lead us to make the following conjectures in the

style of Theorem 4 and Conjecture 2 of [5].

Conjecture 1. Let c,k,n, r ∈ N and 1 ≤ k ≤ 2n/r−1, then

ν2 (Sr(c2n,k)) = d2(k)−1

or equivalently,

ν2 (k!Sr(c2n,k)) = k−1.

Conjecture 2. Let n,k, r ∈ N, 2 ≤ k ≤ 2n, and c ≥ 1 be an odd integer, then

ν2

(

k!(Sr(c2n+1,k)−Sr(c2n,k))
)

= n+gr(k) (3.19)

for some function gr(k) which is independent of n (for any sufficiently large n).

Remark 4. Note that g2(2) = 1,g2(3) = 0, g2(4) = 2, g3(2) = 0 and g3(3) = −1.

3.3. General Formula for the Ordinary Generating Function of the r-

associated Stirling Numbers of the Second Kind

We now derive a new general formula for the ordinary generating function of the sequence

{k!Sr(n,k)}∞
n=1. We could not locate this generating function in the literature. In a similar

fashion to formulas (3.11) and (3.12) we obtain

Theorem 10. With some polynomial Λr,k(x) in x with integral coefficients and of degree

(r−1)
(

k
2

)

, we have

Br,k(x) =
∞

∑
n=0

k!Sr(n,k)xn (3.20)

=
k!xkrΛr,k(x)

(1−x)1+(k−1)(r−1)(1−2x)1+(k−2)(r−1) · · ·(1−kx)

=
k!xkrΛr,k(x)

∏k
i=1(1− ix)1+(k−i)(r−1)

.
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Proof. We set Cr,k(x) = ∑∞
n=0 Sr(n,k)xn and note that Br,k(x) = k!Cr,k(x). We use the recur-

rence (3.6), multiply both sides by xn and form a sum starting with the index n = 0. The

sum on the left hand side is Cr,k(x) while on the right hand side we get the sums

∞

∑
n=0

(

n−1

r−1

)

Sr(n− r,k−1)xn =
xr

(r−1)!

dr−1

dxr−1

(

∞

∑
n=0

Sr(n− r,k−1)xn−1

)

=
xr

(r−1)!

dr−1

dxr−1

(

xr−1Cr,k−1(x)
)

and kxCr,k(x). This implies the recurrence relation

Cr,k(x) =
1

1−kx

xr

(r−1)!

dr−1

dxr−1

(

xr−1Cr,k−1(x)
)

. (3.21)

We note that Cr,1(x) = xr/(1− x) and Λr,1(x) = 1 for r ≥ 1, and now we can prove (3.20)

by induction on k for each r ≥ 1. The recurrence (3.21) and the nature of (3.20) suggests

that we use the differentiation rule

(

k−1

∏
i=0

fi(x)

)′

=

(

k−1

∏
i=0

fi(x)

)(

k−1

∑
i=0

f ′i (x)

fi(x)

)

(3.22)

with f0(x) = xr−1
(

x(k−1)rΛr,k−1(x)
)

= xkr−1Λr,k−1(x) and fi(x) = 1/(1 −

ix)1+(k−1−i)(r−1),1 ≤ i ≤ k−1, in the partial fraction decomposition. Note that each term in

f ′0(x) has degree kr−2 +(r−1)
(

k−1
2

)

and in f
(r−1)
0 (x) has degree (k−1)r +(r−1)

(

k−1
2

)

by the induction hypothesis. In fact, we can factor out x(k−1)r from each term, and after

combining it with the factor xr in (3.21), its contribution to Cr,k(x) becomes the factor xkr.

We observe that f ′i (x)/ fi(x)= i(1+(k−1−i)(r−1))/(1−ix). By applying the relation

(3.22) r − 1 times, we gain the extra factor ((1−x)(1−2x) . . .(1− (k−1)x))r−1
in the

denominator of Cr,k(x). For instance, we get that C3,2(x) = x6(6x2−15x+10)/((1−x)3(1−

2x)) and Λ3,2(x) = 6x2 −15x+10.

The degree of Λr,k(x) follows by observing that Λr,1(x) = 1 and its degree increases by

(k−1)(r−1) due to the second factor of (3.22) as we move from k−1 to k.

4. Conclusion

We proved that the Stirling Numbers of the Second Kind form Newton–Euler Sequences.

This fact provides an alternative method to prove congruential properties. We also illus-

trated that the r-associated Stirling Numbers of the Second Kind do not form Newton–Euler

Sequences. By another approach, some divisibilityproperties were presented or conjectured

on the underlying quantities and their differences. We investigated some special cases with

r = 2 and k = 2,3,4, as well as with r = 3 and k = 2,3. We also derived a new recurrence

in k for the ordinary generating function Cr,k(x) = ∑∞
n=0 Sr(n,k)xn = ∑∞

n=kr Sr(n,k)xn of the

associated Stirling Numbers of the Second Kind {Sr(n,k)}∞
n=1.

It appears that little is known about congruential and divisibility properties of the asso-

ciated Stirling Numbers of the Second Kind. We derived two lower bounds on the 2-adic
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orders of these numbers and their differences. The new generating function (3.20) might

help in finding exact p-adic properties for p = 2 and other primes too although the analysis

of the generating function might need a new approach since the nature of its denominator

seems significantly more complex than that of the ordinary Stirling Numbers of the Second

Kind.

Our main results are summarized in Theorems 2, 8, 9, and 10. The Conjectures 1 and 2

suggest the exact 2-adic orders.
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