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Abstract

We generalize and solve a problem regarding the divisibility of a sequence defined
as the lower integer part of powers of the largest root of a polynomial equation. Two
solutions are presented using various root finding, root extraction as well as algebraic
techniques. We rely on the periodic properties of linear recurrences and powers of
integers modulo primes and apply methods for estimating power sums and for deter-
mining limit points of the fractional part of powers of the largest root. We also present
examples and discuss numerical and computational concerns.
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1. INTRODUCTION

The motivation for this note comes from a recommended problem for the International
Mathematical Olympiad (IMO) that was not used.

Problem. [DJMP, Problem 7, p. 226] (FRA 2) Let r be the greatest positive root of the
equation x3 − 3x2 + 1 = 0. Show that br1788c and br1988c are both divisible by 17, where
bxc denotes the integer part of a real number x.

Two recommended solutions are presented in [DJMP, p. 504]. Our goal is to generalize
this problem to other polynomials and divisors.

We use various techniques (e.g., Sturm theorem and Rouché’s theorem) to locate the
real and complex roots of polynomials of the form fd(x, a) = xd − axd−1 + 1, a, d ≥ 3
in C (cf. Theorems 3.2 and 3.3) and in Z/pZ with given prime p (cf. Theorem 3.4).
We discuss properties related to power sums and their estimations in Lemmas 3.6–3.9
and Theorem 3.1. As a general technique, we utilize the modular periodicity of linear
recurrences of order d.

*E-mail address: lengyel@oxy.edu; Website: http://sites.oxy.edu/lengyel.
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The main results are included in Theorems 3.1–3.4. In Section 2 we present the so-
lutions to Problem 1 while Section 3 is devoted to the generalizations. As far as the root
finding aspects are concerned, Sections 3.1–3.5 cover the analytic considerations while Sec-
tion 3.6 deals with the algebraic approach. In Section 4 we illustrate the differences between
the two approaches on some examples.

2. METHODS

Two solutions are presented that use various root finding and root extraction methods and
algebraic techniques. On one hand, we rely on the periodic properties of linear recurrences
and powers of integers modulo primes, and on the other hand, we apply methods for
estimating power sums and for determining limit points of the fractional part of powers of
the largest root. First we describe the original solutions.

First take

Note that over the real numbers we have x3− 3x2+1 = (x− r1)(x− r2)(x− r3) with
roots

r1 ≈ 2.87939 > r2 ≈ 0.652704 > r3 ≈ −0.532089; (2.1)

and thus, clearly, brn1 c = rn1 + rn2 + rn3 − 1 for n ≥ 1 by the construction (2.2) and the
explanation below. We want to find the exponents n for which brn1 c ≡ 0 (mod 17).

We define a sequence {Tn}n≥0 of integers by the recurrence

Tn = 3Tn−1 − Tn−3 (2.2)

for n ≥ 3 and initial values T0 = 3, T1 = 3, and T2 = 9. Latter one follows by the
Newton-Girard formulas (cf. [S]) applied to the coefficients of x3 − 3x2 + 1:

(−1)k−1kEk = Sk − Sk−1E1 + · · ·+ (−1)k−1S1Ek−1 (2.3)

where

Sk = Sk(x1, x2, . . . , xd) =

d∑
i=1

xki (2.4)

is the kth power sum of the variables x1, x2, . . . , xd, and Ek =∑
1≤i1<i2<···<ik≤d xi1xi2 · · ·xik is the kth elementary symmetric polynomial of the

same variables. Here d = 3 and the xis are the roots of the polynomial. Identity (2.3) leads
to S2 = S2

1 − 2E2 = 32 = 9. It is well known that Tn = Sn(r1, r2, r3) = rn1 + rn2 + rn3
for all n ≥ 0, after properly setting the initial values of Tn. In general, for a polynomial
equation of degree d, we have Tn = Sn(r1, r2, . . . , rd) with properly set initial values if
the roots ri are different. We have that T0 = S0 = d by (2.4).

We look for 1 in the modulo 17 period of the sequence {Tn}n≥0 and find that the
length of the period is π(17) = π(17;Tn) = 16 and n ≡ 4 and 12 (mod 16), i.e.,
n ≡ 4 (mod 8) are the indices to give Tn − 1 = brn1 c ≡ 0 (mod 17). We find that 1788
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and 1988 ≡ 4 (mod 8) and the divisibility by 17 follows. We conclude that both br17881 c
and br19881 c are divisible by 17.

It is worth noting that this approach offers a somewhat unusual application of linear
recurrences. Assume that the sequence {Un}n≥0 is defined by a linear recurrence of order
d with constant coefficients and given initial values Un, n = 0, 1, . . . , d − 1, and that all
roots ri of the characteristic equation are different. Typically, we rely on the usual ansatz
with undetermined coefficients ai, 1 ≤ i ≤ d, and featuring

Un =
d∑

i=1

air
n
i , n ≥ 0. (2.5)

We determine the ais based on the first d initial values and calculate the sequence by
(2.5) without applying the recurrence relation. Here, however, we use a kind of reverse
engineering. In order to proceed according to (2.2), we determine the initial values of Tn
after setting all ais to 1 in (2.5).

Second take

The nice idea behind the other and more elegant recommended solution is that after
factoring the polynomial x3− 3x2 +1 ≡ (x− 4)(x− 5)(x− 11) (mod 17) in the field of
modulo 17 integers Z/17Z, we can use Fermat’s little theorem to see that the period of the
sequence {4n +5n +11n− 1 (mod 17)}n≥0 must be a divisor of 16 (in fact, π(17) = 16)
and to obtain the congruence brn1 c ≡ 4n + 5n + 11n − 1 (mod 17), which is true here
for all n ≥ 1. Now the relevant congruence brn1 c ≡ 0 (mod 17) is satisfied exactly if
n ≡ 4 or 12 (mod 16), and we conclude the same way as in the above solution. Note that
this approach heavily depends on the fact that we can factor x3 − 3x2 + 1 modulo 17 into
linear factors.

3. RESULTS: THE GENERAL CASE WITH d ≥ 3 AND a ≥ 3

We generalize the original cubic problem to the function f3(x, a) = x3− ax2 +1 and then
to fd(x, a) = xd− axd−1+1, with a, d ≥ 3 integers, and provide a way of solving it when
the polynomial cannot be factored into linear factors over Z/pZ for the given prime p.

3.1. The Generalized Cubic Example

In general, if f3(x, a) = x3 − ax2 + 1 with a ≥ 2, then for the roots we have that −1 <
r3 < 0 < r2 < 1 < r1 < a; indeed, it is easy to see that

a− 1

a2
− 2

a3
< r1 < a (3.1)

and thus,
r2 + r3 = a− r1 > 0 (3.2)
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and, by the Sturm theorem [DF] about the number of real roots of a polynomial in a given
interval, we get that −1 < r3 < 0 < r2 < 1 and |r3| < r2 by (3.2). For d ≥ 3 we will use
Rouché’s theorem to locate all roots, not just the real ones, in Theorem 3.2 in Section 3.3.

3.2. The General Case

We note that for a prime power or composite modulus brn1 c can be analyzed by the
first method in Section 2 while the other method outlined in Section 2 based on the
factorization of fd(x, a) = xd − axd−1 + 1 might be prohibitive if we cannot find the
factorization. In this section we generalize the first method while the second method is
extended in Section 3.6. The locations and values of the real and complex roots of fd(x, a)
are determined in Section 3.3. Properties of the auxiliary sequence {S−n }n≥0 are dis-
cussed in Sections 3.4–3.5 and the proof of the main Theorem 3.1 is included in Section 3.4.

We set f(x, a) = fd(x, a) = xd − axd−1 + 1 = 0 and its accompanying polynomial
g(x, a) = gd(x, a) = xdf(1/x) = xd − ax + 1. We use the notation f(x, a) and g(x, a)
when there is no need to emphasize their degrees. We order the roots ri, i = 1, 2, . . . , d, of
fd(x, a): |r1| ≥ |r2| · · · ≥ |rd|.

We observe that all roots ri of fd(x, a) = 0 are different because the roots of f ′d(x, a)
are not roots of fd(x, a); cf. Theorem 3.2. We have the following standard identity for the
generating function of the power sums.

Lemma 3.1. We have
∞∑
n=0

Tnx
n =

∞∑
n=0

Sn(r1, r2, . . . , rd)x
n =

d− (d− 1)ax

gd(x, a)
. (3.3)

Proof of Lemma 3.1. We write fd(x, a) = xd − axd−1 + 1 =
∏d

i=1(x − ri) and
xdfd(1/x, a) = xd−ax+1 = gd(x, a) = xd

∏d
i=1(1/x−ri) =

∏d
i=1(1−rix). According

to [B, (2.1)], we have

−x
g′d(x, a)

gd(x, a)
=

∞∑
n=1

Sn(r1, r2, . . . , rd)x
n.

It yields that

∞∑
n=0

Sn(r1, r2, . . . , rd)x
n = d+

(
−x dxd−1 − a

xd − ax+ 1

)
=
d− (d− 1)ax

xd − ax+ 1
.

Since the roots are different, we have that Tn = Sn.

Identity (3.3) implies the recurrence relation

Tn = a Tn−1 − Tn−d (3.4)

with initial values T0 = d, Tk = ak, 1 ≤ k ≤ d− 1 according to (2.3) and (2.4).
With the above choice of initial values, {Tn}n≥0 is a sequence of integers and
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Tn =
∑d

i=1 r
n
i = Sn(r1, r2, . . . , rd) by (2.4). Note that from latter fact it is not

obvious that the Tns are integers. In order to investigate whether m divides Tn we consider
the sequence {Tn (mod m)}n≥0 defined by the congruential recurrence

Tn ≡ a Tn−1 − Tn−d (mod m) (3.5)

which is computationally more suitable than (3.4).

Remark 3.1. We note that if a = 2 then r2 = 1. For a partial analysis of the case with
a = 2 see [W] and [FS, p . 309]. The ordinary generating function (OGF) of the number of
compositions all of whose summands lie in {1, 2, . . . , d−1}, d ≥ 2, is (1−x)/gd(x, 2); cf.
[FS, p. 42] and also see [FS, p. 52] for a related OGF. For instance, it follows that if d = 3
then x(1− x)/g3(x, 2) is the OGF of the Fibonacci sequence.

Historically, Newton and Bernoulli used the estimations Tn ∼ rn1 and Tn/Tn−1 ≈ r1,
respectively. Their approach provided linear convergence to r1, then Newton’s (also known
as the Newton–Raphson) method improved this to quadratic convergence; cf. Section 3.3.
However, we need the exact value of Tn. We prove the following main theorem.

Theorem 3.1. For any sufficiently large n we have that Tn = brn1 c+ 1.

In the proof we use the sum of powers S−n =
∑d

k=2 r
n
k of the “small” roots in R =

{r2, r3, . . . , rd−1}. The largest root r1 is real by Theorem 3.2; thus, for any complex root
ri its complex conjugate is also contained in R, which makes S−n real. We will prove that
S−n is positive and bounded; cf. Lemmas 3.6 and 3.8.

Remark 3.2. It appears that often there is a discrepancy between Tn and brn1 c+1 if a < d
and n = 0 or d− 1 in which case T0 = d and br01c+ 1 = 2 and Td−1 ≥ brd−11 c+ 2. For
instance, if a = 4 and d = 15 then, in agreement with (3.8), we have S−14 ≈ (d−1)/a = 3.5;
and thus, T14 = br141 c+ 4 = 268435456.

3.3. The Real and Complex Roots of fd(x, a)

To see only that there are two or three real roots of the appropriate signs we note that
fd(0, a) = 1 and f ′d(x, a) = xd−2(dx − (d − 1)a)=0 has two roots and thus, fd(x, a) has
two “turning points.” We need a finer analysis and locate all d roots on the complex plane
in the next theorem.

Theorem 3.2. For a ≥ 3, the largest root satisfies a − 2/ad−1 < r1 < a. If a, d ≥ 3 then
all the other d− 1 roots r = r2, r3, . . . , rd with |r2| ≥ |r3| ≥ · · · ≥ |rd| are located in the
unit disk so that (a + 1)−

1
d−1 < |r| < (a − 1)−

1
d−1 < 1 and r2 > 0. The roots r1 and r2

are real numbers and all roots are different.

Proof of Theorem 3.2. First we prove that all roots are different, then using continuity
arguments we locate the largest root r1 in the neighborhood of a and the second largest
root r2 in the interval (0, 1). Finally, by Rouché’s theorem we prove that all roots except r1
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are contained in an annulus centered at zero and enclosed in the unit disk.

All roots ri are different because the roots of f ′d(x, a) are not roots of fd(x, a) since
a(d− 1)/d is rational while all roots are non-rational by Lemma 3.5.

Clearly, f(a, a) = 1 and f(a − 2/ad−1, a) = (−2)(1 − 2/ad)d−1 + 1 < 0 since
a, d ≥ 3. By the continuity of f(x, a) it follows that there is a root in the range
(a− 2/ad−1, a), and it turns out that this is the largest root, r1.

By using an argument similar to that in [HW, p. 37], we can locate the
other d − 1 roots. There is a root of f(x, a) in the interval (0, 1) since
f(0, a) = 1 > 0 > f(1, a) = 1 − a + 1 with a > 2; it is the only real root in the
interval (0, 1) since f ′(x, a) = xd−2(dx − (d − 1)a) < 0 for 0 < x < 1 < a(d−1)

d if
d ≥ 3 and a ≥ 2. Let r∗ be the only real root in (0, 1) then for all roots r, except the
largest one r1, which is close to a, we have that |r| < r∗ + ε < 1 for some positive
ε < 1 − r∗ and r∗ − δ < |r| for some positive δ < r∗, by applying Rouché’s theorem
(cf. [FS] and [HW]) twice using the parameters ε and δ given by Lemmas 3.2 and 3.3.
Indeed, |xd + 1| < |axd−1| on the circle |x| = r∗ + ε yielding d − 1 roots in the open
disk |x| < r∗+ε and 1 > |axd−1| on the circle |x| = r∗−δ yielding no root in |x| < r∗−δ.

It follows that r∗ = r2.

The next two lemmas suggest values for ε and δ to be used in the proof of Theorem 3.2.

Lemma 3.2. Any ε > 0 such that (a − 1)−
1
d−1 − r∗ < ε < 1 − r∗ guarantees that

|xd + 1| < |axd−1| on the circle |x| = r∗ + ε.

Proof. We need that |xd+1| < |axd−1| on |x| = r∗+ ε, which can be achieved by solving
|xd + 1| ≤ |x|d + 1 < a|x|d−1, i.e., |x| + 1/|x|d−1 < 1 + 1/(r∗ + ε)d−1 < a, which is
satisfied if (a− 1)−

1
d−1 − r∗ < ε.

Lemma 3.3. Proper choices for δ > 0 are given by r∗− (a+ 1)−
1
d−1 < δ < r∗.

Proof. We need that 1 > |xd − axd−1| = |x|d−1|x − a| on |x| = r∗ − δ, which can be
achieved by solving 1 > |r∗− δ|d−1|a+1| > |r∗− δ|d−1|a+ r∗− δ| ≥ |xd− axd−1|; and
thus, if (a+ 1)−

1
d−1 > |r∗ − δ|.

Theorem 3.2 implies that we have either two positive or two positive and one negative
real roots of fd(x, a), depending upon whether d is even or odd. The latter case can be
proven similarly to the way we find r∗ in the proof of Theorem 3.2 since if d is odd then
fd(−1, a) = −1− a+ 1 = −a < 0 < 1 = fd(0, a), and f ′(x, a) > 0 for x < 0. Note that
the real roots are irrational numbers; cf. Lemma 3.5.

We mention the following general lemma, which also gives some ideas about the signs
of the roots. According to the lemma fd(x, a) has either two or no positive roots (indeed,
there are two of them) and one or no negative roots if d is odd or even, respectively.
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Lemma 3.4 (Descartes’ rule of signs). If f(x) = anx
n + an−1x

n−1 + · · · + a0 is a poly-
nomial with real coefficients, then the number of positive roots of the polynomial equation
f(x) = 0 is either equal to the number of times the coefficients in f change sign or less
than that by an even number. The number of negative roots of f is obtained by applying the
above rule to f(−x) for the number of positive roots.

Remark 3.3. According to Theorem 3.2, we know that the d − 1 small roots r are located
in an annulus with radii (a + 1)−

1
d−1 and (a − 1)−

1
d−1 and centered at the origin on the

complex plain. For example, if a = d = 3, then for the two small roots r2 and r3 of f3(x, 3)
we get that 1/

√
4 = 0.5 < |r3| < |r2| < 1/

√
2 = 0.707, in agreement with (2.1).

Note that if a or d is large then the width of the annulus becomes small and so does the
difference |r2| − |rd|.

We can get better estimates for r1. Newton’s method suggests the approximation
a1 = a − 1/ad−1 with initial value a0 = a for r1. As we take more steps we observe
that Newton’s method provides fast convergence to r1 although it overestimates r1 as
f(an) > 0, f ′(an) > 0 with n ≥ 0 and f ′′(x) > 0 in a neighborhood of x = a. Moreover,
we can do much better according to Theorem 3.3 below since we can determine the exact
value of r1 in terms of a series.

The following lemma and theorem can be proven by modifying the argument in [W]
that was used in the analysis of the equation xk−

∑k−1
i=0 x

i = 0; which, by adding the extra
root x = 1, is equivalent to xk+1 − 2xk + 1 = 0, i.e., fk+1(x, 2).

Lemma 3.5. The polynomial fd(x, a) is irreducible over the rationals if a, d ≥ 3.

Note that Lemma 3.5 also immediately follows by the rational root theorem which is a
special case of Gauss’s lemma; cf. [G, Problem 220].

Theorem 3.3. Let r1 = a(1 − εd) be the positive real root about a of the characteristic
equation fd(x, a) = 0. Then

εd =
∞∑
i=0

(
di+ d− 2

i

)
1

(i+ 1)ad(i+1)
.

Note that above sum provides a series that converges quickly to r1 if a and/or d is large,
and εd = 1/ad + (2d− 2)/(2a2d) + . . . ; thus,

r1 = a(1− εd) = a− 1/ad−1 − (d− 1)/a2d−1 − . . . .

For d = 3 we mentioned r1 > a − 1/a2 − 2/a3 in (3.1), which is a better underestimate
than the one suggested by Theorem 3.2, r1 > a − 2/a2. An even better overestimate
follows by Theorem 3.3 for d = 3: r1 < a − 1/a2 − 2/a5, while in general, we have
r1 < a− 1/ad−1 − (d− 1)/a2d−1.
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3.4. Some Properties of the Power Sum S−n

To prove Theorem 3.1 we need some preparation provided by Lemmas 3.6 and 3.7 and
finally by Lemma 3.8.

Lemma 3.6. Let S−n =
∑d

k=2 r
n
k and 0 < ε < 1. We have

|S−n | ≤ R−n =
d∑

k=2

|rk|n < (d− 1)(a− 1)−
n
d−1 < ε

if (d− 1) ln((d− 1)/ε)/ ln(a− 1) < n and a > 2.

Remark 3.4. We can also derive the above inequality for |S−n | in a slightly improved form
by the general power sum inequality for complex numbers given in [B], which claims that

|S−n | ≤ (d− 1)

(
max
2≤k≤d

|rk|
)n

= (d− 1)rn2

for all n = 1, 2, . . . . According to our estimate on r2 we can conclude that

|S−n | < (d− 1)(a− 1)−
n
d−1 for n = 2, 3, . . .

as in Lemma 3.6.

Proof of Lemma 3.6. The proof follows by Theorem 3.2. As |rk|n < (a − 1)−
n
d−1 for all

k ≥ 2, we have
d∑

k=2

|rk|n < (d− 1)(a− 1)−
n
d−1 < ε

in the given range for n.

In this case, we get that Tn = brnc+ 1 by Lemma 3.7 and the fact that
Tn = Sn = rn1 + S−n is an integer. Our goal is to evaluate S−n in order to compute
Sn by the recurrence relation for Tn.

The next lemma follows by results regarding the fractional parts of powers of Pisot
numbers.

Lemma 3.7. S−n =
∑d

k=2 r
n
k > 0 for all sufficiently large n.

Proof of Lemma 3.7. We know that the sequence of fractional parts {rn} (n = 0, 1, . . . )
cannot have 0 as the unique limit point if r > 1 is an algebraic number other than an
integer, which result is due to Luca [L] and Dubickas [D1]. By Lemma 3.6 it follows that
the fractional parts {rn1 } must be close to 0 or 1 if n is large since Tn = rn1 + S−n is an
integer. Therefore, we need that 1 is the unique limit point. In fact, 1 is the unique limit
point of the sequence of the fractional parts {rn1 } by [D2, Theorem 2(iii)] since r1 is a
strong Pisot number; cf. [D2].
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Apparently, we can strengthen Lemma 3.7 and prove that S−n > 0 for all n ≥ 0 as it is
stated in Lemma 3.8. On the other hand, it is possible that S−n > 1, e.g., a = 4, d = 15,
and n = 14, in which case S−n = Tn − rn1 > 3; cf. Remark 3.2.

Lemma 3.8. S−n =
∑d

k=2 r
n
k > 0 for all n ≥ 0.

Proof of Lemma 3.8. Clearly, S−0 = d− 1 and S−n = Sn− rn1 > 0 for n = 1, 2, . . . , d− 1,
by Theorem 3.2. We prove that S−n > 0 for all n ≥ 0 by induction. Assume that S−n−1 > 0,
with 1 ≤ n ≤ n′. We apply the Newton-Girard formulas for the sums of powers of the
d− 1 roots of

fd(x, a)

x− r1
= xd−1 − b1xd−2 − b2xd−3 − · · · − bd−2x− bd−1.

Note that bd−1 = 1/r1 > 0 and the identity

fd(x, a) = xd − axd−1 + 1 = (x− r1)(xd−1 − b1xd−2 − · · · − bd−2x− bd−1)

also implies that−b1−r1 = −a, i.e., b1 = a−r1 > 0,−b2+r1b1 = 0, i.e., b2 = r1b1 > 0,
−b3 + r1b2 = 0, i.e., b3 = r1b2 > 0, etc., −bd−2 + r1bd−3 = 0, i.e., bd−2 = r1bd−3 > 0.
By the Newton-Girard formulas we have

S−n − b1S−n−1 − b2S
−
n−2 − · · · − bd−1S

−
n−d+1 = 0

for n ≥ d. It implies that S−n > 0 for n = n′ since bi > 0, i = 1, 2, . . . , d − 1 and by the
induction hypothesis S−n > 0, n = 1, 2, . . . , n′ − 1.

Now we are ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemmas 3.6 and 3.8 we have that 0 < S−n < 1 if n is sufficiently
large, which implies that Tn = Sn = rn1 + S−n = brn1 c+ 1 for any sufficiently large n.

3.5. Properties of S−n for Small Values of n

After some numerical experimentation, we approximate S−n for a certain set of n values.
Although the approximation provides only supplementary information on S−n we included
it for illustrative purposes. Indeed, we observe that S−d−1 ≈ 1 with a = d− 1 and
S−d−2 ≈ 1/(d− 2) with a = d− 2.

In this section we discuss the behavior of S−n for small values of n. We use the idea of
bootstrapping since ard−1k = rdk + 1; therefore, we can write for the d− 1 “small” roots of
xd − axd−1 + 1 = 0 that

rk =

(
1 + rdk
a

) 1
d−1

e
2πi
d−1

(k−2), 2 ≤ k ≤ d, (3.6)
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which results in

rnk = a−
n
d−1

(
1 +

n

d− 1
rdk +O

(∣∣∣∣ n2

(d− 1)2
r2dk

∣∣∣∣)) e 2πi(k−2)n
d−1

= a−
n
d−1

(
1 +

n

d− 1
rdk(1 + o(1))

)
e

2πi
d−1

(k−2)n,

if n is sufficiently small to make n/(d − 1)|rk|d ≤ n/(d − 1)(a − 1)−d/(d−1) small,
by Theorem 3.2. We want to make sure that n is relatively small with respect to
(d − 1)ad/(d−1) (cf. Lemma 3.9), although it does not necessarily imply that a must be
large; cf. Remark 3.2. Note that here, in a rather unusual fashion, o(1) means a quantity
which is small when n is sufficiently small as noted above, and in general, o(A) means a
quantity such that |o(A)|/|A| is small when n is sufficiently small. O(A) is defined in a
similar fashion: it means that |O(A)|/|A| is bounded from above by a finite constant if n
is small.

We add these terms with k = 2, 3, . . . , d, and approximate
∑d

k=2 r
n
k by (3.6) in

d−2∑
k=0

rnk =

d−2∑
k=0

a−
n
d−1 e

2πi
d−1

nk +
n

d− 1
a−

n+d
d−1

d−2∑
k=0

e
2πi
d−1

(d+n)k(1 + o(1)) (3.7)

if |rdk| < (a− 1)−d/(d−1) is sufficiently small. If d− 1 | n then the first sum in
(3.7) contributes (d− 1)a−n/(d−1) to

∑d−2
k=0 r

n
k while the second sum contributes

o(na−(n+d)/(d−1)). On the other hand, if d− 1 | n+ d, i.e., d− 1 | n+ 1 then the second
sum contributes na−(n+d)/(d−1) and the error term combined with the first sum amounts to
o(na−(n+d)/(d−1)).

In summary, we get

Lemma 3.9. If n� (d− 1)(a− 1)d/(d−1), then

S−n ≈

{
a−

n
d−1 (d− 1) if d− 1 | n,

na−
n+d
d−1 if d− 1 | n+ 1.

(3.8)

Remark 3.5. By Lemma 3.9 it follows that S−d−1 ≈ 1 if a = d − 1, and S−d−2 ≈
1

d−2 if
a = d− 2.

Remark 3.6. By (3.8), if m ∈ {0, 1} and m ≡ −n (mod d− 1) then

S−n ≈
(
n

m

)
a−

n+md
d−1 (d− 1)−m+1. (3.9)

Therefore, in the special case d = 3, as 2 | n or 2 | n+1, the approximation (3.9) provides
a fairly good estimate of S−n for relatively small values of n by Lemma 3.9.
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3.6. The Roots of fd(x, a) in Z/pZ

Our method based on the recurrence (3.5) works for any composite modulus m, however,
it requires the analysis of the members of its modulo m period and that n is sufficiently
large in order to have Tn − 1 ≡ brn1 c (mod m). As before, p denotes a prime. The elegant
alternative approach outlined in Section 2 and generalized in the current section, assumes
that fd(x, a) can be factored into linear factors in the polynomial ring (Z/pZ)[x] for all
prime divisors p of m and then it works for all sufficiently large n. (Both methods work
for all n ≥ 1 if d = 3 by Theorem 3.2.) This method captures and utilizes the information
coded in the polynomial fd(x, a) in terms of its roots in Z/pZ. The good news is that
Lemma 3.5 about its factorization over the rationals has no bearing on whether fd(x, a) can
be factored into linear factors in (Z/pZ)[x]. Note that, e.g., x2 + 1 cannot be factored over
Z but x2 + 1 = (x− 2)(x− 3) in (Z/5Z)[x], which then leads to the roots ...4312125 and
...0132335 in the ring of 5-adic integers Z5 by Hensel’s lemma (cf. [G]). This approach
offers a direct method to evaluate brn1 c modulo primes and prime powers; cf. Example 4.2
for f3(x, 3) and p = 17.

Remark 3.7. In (Z/pZ)[x] only a fraction
(
p
d

)
/pd of general monic polynomials of degree

d have d different linear factors.

Theorem 3.4. If fd(x, a) can be factored in (Z/pZ)[x] into the product of linear factors
with or without multiple factors then, with its roots Rk, k = 1, 2, . . . , d, we have

fd(x, a) ≡
d∏

k=1

(x−Rk) (mod p) (3.10)

and
∞∑
n=0

Tnx
n =

d− (d− 1)ax

gd(x, a)
≡

d∑
k=1

1

1−Rkx
(mod p), (3.11)

which for all n ≥ 0 leads to the congruence

Tn ≡
d∑

k=1

Rn
k (mod p). (3.12)

Proof of Theorem 3.4. The proof follows by adapting that of Lemma 3.1 to modulo p,
e.g., we have that gd(x, a) ≡

∏d
k=1(1−Rkx) (mod p).

For example, if g2(x, a) = (1 − mx)2 = 1 − 2mx + m2x with a = 2m and
m2 ≡ 1 (mod p), i.e., corresponding to g2(x, a) ≡ 1 − ax + x2 (mod p), then we get
that Tn ≡ 2mn (mod p). Note that here m is a multiple root.

If we do not have multiple factors in (3.10) then the congruence (3.11) can be lifted to
prime powers pk with any k ≥ 1 in order to determine Tn (mod pk); cf. Example 4.2. If
we have multiple factors then we cannot lift. For example, if we set p = 3 in the original
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example then f3(x, 3) ≡ (x+ 1)3 (mod 3); and thus, brn1 c ≡ 3(−1)n − 1 ≡ 2 (mod 3).
The above method does not help us to find the proper congruence, similar to (3.11), when
the modulus is 3k, k ≥ 2, since −1 is a multiple root. Note, however, that for all n ≥ 1
one can easily find that brn1 c ≡ 7 + 8 × 2n + 8 × 4n + 3 × 5n + 2 × 7n + 1 × 8n ≡
3 × 25n + 24n+1 − 22n − 2n + (−1)n − 2 (mod 9) by standard algebraic approach and
these representations are not unique.

Remark 3.8. Assume that m has the prime number factorization m =
∏s

i=1 p
ei
i . If the

above factorization method works modulo m with different linear factors then in the prop-
erly updated congruence (3.12) we have d × s terms to find out whether and when brn1 c is
divisible by m. The final step is to look into the modulo m period whose length is

lcm{π(peii ;Tn), i = 1, 2, . . . , s} (3.13)

and the sequence {Tn}n≥0 corresponds to the characteristic polynomial fd(x, a). Note
that π(peii ) | piπ(p

ei−1
i ) with ei ≥ 2. No need to use the recurrence (3.4) since the updated

congruence (3.12) suffices in order to obtain Tn (mod m) and π(m) | φ(m) by Fermat’s
little theorem as we have already observed in Section 2.

4. EXAMPLES AND COMPUTATIONAL CONCERNS

In this section we list three examples to illustrate the two basic techniques with their
benefits and limitations.

Note that for a composite modulus m the second method requires that we factorize
fd(x, a) with respect to all prime divisors of m and if we succeed with the factorization
into linear factors, then we can proceed by the lifting (cf. Example 4.2) if necessary, and
then use the Chinese remainder theorem twice: to find the right congruence modulo m and
the right indices to guarantee divisibility; cf. Example 4.3. Other computational concerns
are addressed in Remark 3.8.

On the other hand, the first method allows us to work out the solutions in a single
step, using the recurrence relation (3.4) modulo m and then exploring the period (cf. (3.5)
and (3.13)), without the factorization requirement or regard to the composite nature of the
modulus; cf. Example 4.1. Note that determining brn1 c for large n would require high
precision calculations; and thus, the use of (3.5) is advisable.

Example 4.1. We look into the modulo 5 and modulo 25 periods of brn1 c with
(a, d) = (4, 5) via the recurrence (3.5). We find that π(5) = 24 and 5 | brn1 c ex-
actly if n ≡ 2, 4, 10, 12, 20 (mod 24) while π(25) = 120 and 25 | brn1 c exactly if n ≡
20, 34, 60, 100 (mod 120). The last index with Tn 6= brn1 c + 1 is n = d − 1 = 4 and
T4 = br41c+2 in agreement with Lemma 3.9. For a similar reason Tn−brn1 c is “relatively
large,” in the sense that it exceeds 0.11, when n = 3, 4, 7 and 8. Note that

f5(x, 4) = x5 − 4x4 + 1 ≡ (x+ 2)(x2 + x+ 1)(x2 + 3x+ 3) (mod 5)

cannot be factored into linear factors in (Z/5Z)[x].
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Example 4.2. We take f3(x, 3) = x3− 3x2+1 and consider brn1 c (mod 172). Recall that
the modulo 17 roots (in base 17) are b (corresponding to (11)17), 5, and 4. Now the modulo
172 roots are 215 = cb17, 158 = 9517, and 208 = c417. In fact, we can find the 17-adic
roots by the Sage package (based on Hensel’s lemma) and obtain ...d85cb17, ...fad9517,
and ...4eec417. We get that

Tn − 1 = brn1 c ≡ 215n + 158n + 208n − 1 (mod 172),

and brn1 c is divisible by 172 exactly if n ≡ 68 or 204 (mod 272), i.e., n ≡ 68 (mod 136)
since π(172) = 16× 17 = 272.

Note that there are 680 monic polynomials of degree three (out of 173 = 4913) in
(Z/17Z)[x] that can be factored into three different linear factors while 289 of them have
multiple (linear) factors and 2312 of them have only one linear factor. The remaining 1632
polynomials are irreducible in Z/17Z.

Theorem 4.1 states that in general, among all monic polynomials of degree 3 there is an
interesting relation among the numbers of different possibilities regarding their factorization
properties. We set In = In(p) = 1

n

∑
k|n µ(k)p

n/k for the number of monic irreducible
polynomials of degree n over Z/pZ where µ is the Möbius function; cf. [FS, p. 91]. More
related results can be found in [FS, pp. 449 and 672].

Theorem 4.1. Consider all general monic polynomials of degree 3 in (Z/pZ)[x]. For their
factorization property over Z/pZ, we set

• A1 =
(
p
3

)
, the number of polynomials that can be factored into three different (linear)

factors;

• A2 = I3, the number of polynomials that are irreducible;

• A3 = pI2, the number of polynomials that have one linear factor and an irreducible
quadratic factor;

• A4 = p, the number of polynomials that have a multiple linear factor of multiplicity
3;

• A5 = 2
(
p
2

)
+ p, the number of polynomials that have multiple (linear) factors (of

multiplicity 2 or 3).

Then A1 +A2 +A3 +A5 = p3 and A1 +A2 = A3.

Proof of Theorem 4.1. The given Ai values and the first summation identity
are self-explanatory. We have I2 = (p2 − p)/2 and I3 = (p3 − p)/3, which imply
A1 +A2 =

(
p
3

)
+ (p3 − p)/3 = (p3 − p2)/2 = pI2 = A3.
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Example 4.3 (Example 4.2 continued). If we switch to the composite modulus 172 × 37 =
10693 in Example 4.2 then we get

Tn − 1 =brn1 c
≡(158n + 208n + 215n)× 4625

+ (15n + 29n + 33n)× 6069− 1 (mod 10693),

by the Chinese Remainder Theorem. Then brn1 c is divisible by 172 × 37 exactly
if n ≡ 748 (mod 1224) by using the extended Chinese Remainder Theorem since
gcd(π(172), π(37)) = gcd(16× 17, 36) = 4. Note that π(172 × 37) = 2448 divides
φ(172 × 37) = 9792.
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We thank Georges Győry for bringing the original problem to our attention and for some
discussions. We also thank the referee for the careful reading of the manuscript, some
corrections, and helpful suggestions.

REFERENCES

[B] Buckholtz J. D., Sums of powers of complex numbers, J. Math. Anal. Appl. 17
(1967), 269–279.
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