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Difference Equations and Divisibility
Properties of Sequences
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Angeles, CA 90041, USA

(Received 20 October 2001; Revised 27 November 2001; In final form 18 December
2001)

There are many different ways of defining a sequence in terms of solutions to difference
equations. In fact, if a sequence satisfies one recurrence then it satisfies an infinite number of
recurrences. Arithmetic properties of an integral sequence are often studied by direct methods
based on the combinatorial or algebraic definition of the numbers or using their generating
function. The rational generating function is the main tool in obtaining various difference
equations with coefficients and initial values exhibiting divisibility patterns that can imply
particular arithmetic properties of the solutions. In this process, we face the challenging task of
finding difference equations that are relevant to the divisibility properties by transforming the
original rational generating function. As a matter of fact, it is not necessarily the simple
difference equation that helps the most in proving the properties. We illustrate this process
on several examples and a sequence involving a p-sected binomial sum of the form yn ¼
ynðp; aÞ ¼

P1
k¼0

n
kp

� �
a k where p is an arbitrary prime. Let rp(m ) denote the exponent of the

highest power of a prime p which divides m. Recently, the author obtained lower bounds for
rp(yn) based on recurrence relations of order p and p 2 1: The cases with tight bounds have
also been characterized.

In this paper, we prove that rpðynpðp; aÞÞ ¼ n for rpðaþ 1Þ ¼ 1; p $ 3: We obtain
alternative difference equations of order p 2 for yn and order p for the p-sected sequence ynp by
a generating function based method. We also extend general divisibility results relying on the
arithmetic properties of the coefficients and initial values.
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INTRODUCTION

We view a recurrent sequence as a solution to a linear difference equation

with constant coefficients. The study of the various properties of recurrent

sequences including arithmetic properties such as periodicity, congruences,

and divisibility is often based on their generating functions. We illustrate

this approach on different sequences and a specific integral sequence

defined as a p-sected sum. A rather different aspect of p-secting a power

series is that it may provide an important technical tool in focusing on

particular arithmetic details of the original sequence. In addition, the

p-section turns the original difference equation into another one without

increasing its order. We focus on results related to the p-sected sum

ynðp; aÞ ¼
X1
k¼0

n

kp

 !
ak

involving binomial coefficients. This sum is of independent interest. We

note that it is not immediately obvious that yn( p,a ) should satisfy a recurrence

with constant coefficients. Basic and alternative difference equations will be

derived in the fifth section that will make this fact clear. The second section

is devoted to examples to highlight the inherent differences of recurrent

sequences from the point of view of divisibility. The generating function

method is illustrated and applied to congruences and periodicity in the third

section. In the fourth section we develop and discuss fairly general tools for

proving divisibility properties. The fifth section contains the main and

some related results. Their derivation is based on the development of basic

and alternative difference equations for yn( p,a ).

BASIC NOTATIONS AND EXAMPLES

Let the integral sequence yn satisfy the recurrence relation of order d with

integer coefficients ci

yn ¼
Xd

i¼1

ciyn2i; n $ d þ 1: ð1Þ

Let rp(m ) denote the exponent of the highest power of a prime p which

divides m. We set rpð0Þ ¼ 1 and rpðu=vÞ ¼ rpðuÞ2 rpðvÞ if both u and v
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are integers. Let np(k ) be the sum of the digits in the base p representation

of k. As it often turns out rp(yd) and rp(cd) play an important role in the

analysis of rp(yn). We illustrate the basic differences in results and

treatments of difference equations by presenting some examples. These

examples are similar in appearance but rather different in nature. They

aim at divisibility by 3. In Examples 1 and 2 this choice is arbitrary.

The other two examples can be easily modified to discuss divisibility by

other primes.

Example 1 Consider the following difference equation yn ¼ 2yn21 þ

yn22 þ yn23; n $ 3; with the initial conditions y0 ¼ 0; y1 ¼ 1; y2 ¼ 21:

Our goal is to calculate r3(y720).

Example 2 We shall determine r3(yn) and yn for the solution to the

difference equation yn ¼ yn21 þ yn22; n $ 2; with the initial conditions

y0 ¼ 0; y1 ¼ 1:

Example 3 Consider the following difference equation yn ¼ 3yn21 2

3yn22; n $ 3; with the initial conditions y0 ¼ y1 ¼ y2 ¼ 1: Determine

or at least give some bounds on the values of r3(yn) and r3(y3n), and

calculate yn.

Example 4 We ask the same questions as in Example 3 for the difference

equation yn ¼ 3yn21 2 3yn22 þ 3yn23; n $ 3; with the initial conditions

y0 ¼ y1 ¼ y2 ¼ 1:

To answer these questions we consider the generating function

f ðxÞ ¼
X1
k¼0

ykxk

of the sequence and try to derive the solution in a “closed form”. We

explore the properties of the generating function to study arithmetic

properties. The generating function f(x ) can be written as a rational

function PðxÞ=QðxÞ: The denominator Q(x ) represents the difference

equation while the numerator P(x ) carries information on the initial values.

For a recurrent sequence defined by identity (1) the usual initial choice for

Q(x ) is the characteristic polynomial 1 2 c1x 2 c2x2 2 . . . 2 cdxd: We

note that if the roots of Q(x ) are integers then this approach might offer a

complete direct treatment of the questions. The generating function method

provides the following answers to the examples.
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Example 1: We use the partial fraction expansion of the generating

function

f ðxÞ ¼
x

ð1 2 xÞð1þ xÞ2
¼

1=4

1 2 x
þ

1=4

1þ x
2

1=2

ð1þ xÞ2
:

This implies yn ¼ 1=4þ 1=4ð21Þn þ 1=2ð21Þn21ðnþ 1Þ ¼

1=4{ð21Þn21ð2nþ 1Þ þ 1}: We get y720 ¼ 2360; r3ðy720Þ ¼ 2; and in

general,

rpðynÞ ¼
rpðn=2Þ; if n is even;

rpððnþ 1Þ=2Þ; if n is odd:

(

This also follows by observing that the sequence runs through the positive

and negative integers in a simple pattern: 0,1, 2 1,2, 2 2,3, 2 3,. . . .

Example 2: The generating function is f ðxÞ ¼ x=ð1 2 x 2 x2Þ and yn is

the familiar Fibonacci number, Fn. For any prime p – 2 and 5, we have

(cf. [4,7])

rpðynÞ ¼
rpðnÞ þ rpðFnðpÞÞ; if n ; 0 ðmod nðpÞÞ;

0; if n ò 0 ðmod nðpÞÞ

(

where n( p ) is the rank of apparition or Fibonacci entry-point of p, i.e. the

smallest positive index n such that p divides Fn. For example, nð3Þ ¼ 4 and

r3ðF4Þ ¼ 1: Also note that r5ðFnÞ ¼ r5ðnÞ:

Example 3: The generating function is f ðxÞ ¼ ð1 2 xÞ2=ð1 2 3xþ 3x2Þ

and yn ¼ 2·3ðn=2Þ21 cos ðnp=6Þ for n $ 1 (cf. [13]); therefore, y6nþ3 ¼ 0 and

r3ðynÞ ¼ bðn 2 1Þ=2c; n ò 3 mod 6:

Example 4: In this case f ðxÞ ¼ ð1 2 xÞ2=ð1 2 3xþ 3x2 2 3x3Þ which

implies that r3ðynÞ $ bðnþ 1Þ=3c 2 1; and equality holds if and only if

nþ 1 is a multiple of 3 (by Theorem C in Section “Results: divisibility

properties of yn( p,a )”). It follows that r3ðy3nÞ $ n: In Section “Results:

divisibility properties of yn( p,a )” we prove that equality holds here.

We will see that the sequences in the last three examples are related to the

sum yn( p,a ).

CONGRUENCES AND PERIODICITY VIA GENERATING

FUNCTIONS

The generating function carries lots of information on the sequence.

However, it is far from being obvious how to recover information relevant

to arithmetic properties. Sometimes the fine details of the integer sequence
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defined by formula (1) are obscured by the usual rational function

representation. There are relatively prime polynomials P(x ) and Q(x ) with

integer coefficients and deg QðxÞ # d such that f ðxÞ ¼ PðxÞ=QðxÞ: In fact,

there are infinitely many pairs (P(x ),Q(x )), of numerators and

denominators yielding f ðxÞ ¼ PðxÞ=QðxÞ: It might be beneficial to choose

the pair with the minimal polynomial, Q(x ), i.e. the uniquely determined

polynomial of least degree. The advantage is that we have to deal with the

least number of roots after the rational fraction expansion. The potential

drawback of this approach is that the arithmetic properties might get

deemphasized. From a historical point of view, the various arithmetic

properties of factorials and binomial coefficients were studied by Legendre,

Kummer, Lucas, and Anton. They found some remarkable results

concerning divisibility and congruential properties. New and related

techniques were developed to study other combinatorial quantities and to

include periodic properties [11]. A generating function based method was

popularized by Fine’s proof of Lucas’ Theorem on expanding the

congruence
n

k

ÿ �
(mod p ) in 1947. A similar application (cf. [13]) shows that

the Stirling number of the second kind, S(n,k ), satisfies the congruence

Sðn; kÞ ;
dk=2eþ n 2 k 2 1

n 2 k

 !
mod 2:

The modulo p periodicity of a sequence is also often studied via its

generating function. The sequence {yn}n$0 is said to be periodic modulo M

with period p if there exists an n0 $ 0 such that ynþp ; yn (mod M ) for

n $ n0: The smallest such p is called the minimum period modulo M. If

n0 ¼ 0 then the sequence is said to be purely periodic. The following

theorem describes an important situation.

Theorem A Let f ðxÞ ¼ 1=QðxÞ be the generating function of the integer

sequence yn such that Q(x ) is a polynomial with integer coefficients. The

minimum period modulo M is the smallest integer p such that ð1 2 xpÞf ðxÞ

is a polynomial modulo M. If Qð0Þ ¼ 1 and its leading coefficient is

relatively prime to M . 1 then the sequence yn is purely periodic modulo M.

For example, the sequence
n

k

 !( )
n$k

is purely periodic for its generating function is 1=ð1 2 xÞkþ1: The sequence
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in Example 2 and {ynþ1}n$0 of Example 1 are also purely periodic modulo

any integer. Zabek [14] obtained the minimum period of the binomial

coefficients modulo p N in 1956, while Trench [12] extended this result for

integer-valued polynomials in 1960. In 1987 Nijenhuis and Wilf [10]

determined the modulo p periodicity of S(n,k ) in n, while Kwong [5]

determined the period modulo p N, N . 1; in 1989. Note that if P(x ) and

Q(x ) are relatively prime modulo p then the modulo p N period length of the

sequence yn depends on the denominator Q(x ) only (cf. [4]).

DIVISIBILITY VIA GENERATING FUNCTIONS

Let the integral sequence yn satisfy the recurrence Eq. (1) of order d. There

are no general methods known to calculate rp(yn) but ad hoc calculations

based on the closed form of the sequence (cf. Examples 1 and 3) or modulo

p N periodicity. For example, the periodic property obtained by Kwong [5]

lead to the divisibility properties described in

Theorem B [6, Theorem 2] Let c be an odd and n be a non-negative

integer. If 1 # k # nþ 2 then r2ðk! Sðc·2n; kÞÞ ¼ k 2 1; i.e.

r2ðSðc·2n; kÞÞ ¼ n2ðkÞ2 1:

We discuss three different sets of conditions on the divisibility of

the coefficients and initial values that help in the systematic study of

rp(yn).

(a) Assume that the condition rpðcdÞ ¼ 0 holds. A basis of sequences is

defined as a collection of d sequences for which any sequence can be

described uniquely as a linear combination of the basis sequences. For

any prime p such that rpðcdÞ ¼ 0; there exist infinitely many integers k

in a full arithmetic sequence with the property that a block of d

consecutive terms of each basis sequence, starting with the kth term,

has d 2 1 of these terms divisible by p while the remaining term is

congruent to 1 mod p (cf. [9]).

(b) Assume that for some nonnegative integer m and positive integer r, the

initial values and coefficients satisfy the conditions

1#i#d21
min rpðyiÞ $ rpðydÞ ¼ m $ 0
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and

1#i#d21
min rpðciÞ $ rpðcdÞ ¼ r $ 1;

respectively. The lower bound rpðynÞ $ ðbðn=dÞc 2 1Þr þ m is obtained

in Ref. [2], and the cases where the bound is tight are also

characterized. (Theorem C below is a special case of this with

yn ¼ ynðp; aÞ).

(c) If the initial values and coefficients satisfy the conditions

rpðyiÞ ¼ i; 1 # i # d;

and

rpðciÞ $ iþ 1; 1 # i # d 2 1; and rpðcdÞ ¼ d;

respectively, then rpðynÞ ¼ n for n $ 1: The proof follows by

induction on n. We have not found any previous reference to this

result. Case (c) is illustrated on the sum yn( p,a ) in the Theorem

provided p $ 3 and rpðaþ 1Þ ¼ 1:

What is remarkable about these relations is that there is no need for

calculating the coefficients cis and initial values yis explicitly but a proof of

their divisibility properties. Conditions (b) and (c) imply that rp(yn)

increases as n ! 1 while condition (a) shows that this is not always the

case.

RESULTS: DIVISIBILITY PROPERTIES OF yn( p,a )

The divisibility properties of yn( p,a ) eventually depend on the divisibility

by p of aþ 1 for any prime p $ 3 and of a 2 1 for p ¼ 2: The author

recently proved

Theorem C [8] Let p be an arbitrary prime and a be an integer such that

rpðaþ 1Þ ¼ 1 if p $ 3; or a ; 3 (mod 4) if p ¼ 2: Then

rp

Xbn=pc

k¼0

n

kp

 !
ak

 !
$ b

nþ 1

p
c 2 1;

and equality holds if and only if p divides nþ 1:
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If p $ 3 and rpðaþ 1Þ $ 2 then for n $ 1:

rp

Xbn=pc

k¼0

n

kp

 !
ak

 !
$ b

n

p 2 1
c 2 1;

and equality holds if and only if p 2 1 divides n.

If p ¼ 2 and r2ða 2 1Þ ¼ 2 then

r2

Xbn=pc

k¼0

n

kp

 !
ak

 !
¼ n 2 1

for n ; 1; 2 mod 3; and it is at least as large as n if n is a multiple of 3.

If p ¼ 2 and r2ða 2 1Þ $ 3 then

r2

Xbn=pc

k¼0

n

kp

 !
ak

 !
¼ n 2 1:

If a ò 21 mod p thenXbn=pc

k¼0

n

kp

 !
ak ; ðaþ 1Þbn=pc mod p;

hence

rp

Xbn=pc

k¼0

n

kp

 !
ak

 !
¼ 0:

Remark The last case easily follows from Lucas’ Theorem. Actually, if

pjn then the congruence

n

kp

 !
;

n=p

k

 !
mod p

can be improved [3] to

n

kp

 !
;

n=p

k

 !
mod p3

for p $ 5: Therefore, if a ò 21 mod p and n is a multiple of p then the

stronger statement ynðp; aÞ;; ðaþ 1Þn=p mod p3 holds true for p $ 5: The

divisibility structures described in Theorem C are extended in the main

result of this paper.
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Theorem Let p be an odd prime and a be an integer such that

rpðaþ 1Þ ¼ 1: Then rpðynpðp; aÞÞ ¼ n for n $ 0: In particular,

yðnþpÞp ; ðaþ 1Þpynp ðmod pnþpþ1Þ: ð2Þ

For any prime p $ 3 and a ¼ 21 we have

yðnþpÞðp21Þ ; 2ppynðp21Þ ðmod pnþpÞ n $ 1: ð3Þ

Some special cases with a ¼ 21,1, and 5 are of considerable interest.

The case with a ¼ 21 has been studied in Ref. [2], and it is related to the

divisibility properties of S(n,k ). If a ¼ 21 and p ¼ 3 as in Example 3, then

the study of ynð3;21Þ can be carried out by using the trigonometric formula

ynð3;21Þ ¼ 2·3ðn=2Þ21 cos ðnp=6Þ; n $ 1 [13, Example 4, in Section 2.4].

For a ¼ 1 direct summation yields ynð2; 1Þ ¼ 2n21 while for any odd prime

p we get ynðp; 1Þ ; 2bn=pc mod p: The Fibonacci numbers Fn ¼ Fn21 þ

Fn22; n $ 2; F0 ¼ 0; F1 ¼ 1; are related to yn ¼ ynð2; 5Þ by the celebrated

identity

2n21Fn ¼
X1
k¼0

n

2k þ 1

 !
5k:

It follows that Fn ¼ 212n521ðynþ1 2 ynÞ: (For references on rp(Fn) see

Refs. [4] or[7]). Theorem C also implies that r2ðynð2; 3ÞÞ ¼ ðn 2 1Þ=2 for n

odd, and it is at least n=2 for n even. This identity appeared in Ref. [1].

Proof of the Theorem From now on p denotes an odd prime. We obtain

(cf. [2,8]) a rational generating function for yk( p,a ) with a numerator and

denominator of the same degreeX1
k¼1

ykðp; aÞx
k ¼

x{ð1 2 xÞp21 þ axp21}

ð1 2 xÞp 2 axp
¼

NaðxÞ

DaðxÞ
: ð4Þ

Note that Theorem C can be proven by using this rational generating

function. In fact, X1
k¼1

ykð3; 2Þx
k ¼

x 2 2x2 þ 3x3

1 2 3xþ 3x2 2 3x3
ð5Þ

yields the third order difference equation of Example 4: ynþ3 ¼

3ynþ2 2 3ynþ1 þ 3yn; n $ 0: To prove the Theorem we form alternative

recurrence relations for the original sequence yn with properties that are
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more helpful in analyzing its p-sected subsequence ynp. For instance, we

can switch from the original difference equation to ynþ4 ¼ 2ynþ3 þ 3yn:

This alternative difference equation can be obtained by substitutions or by

realizing that D2ðxÞ ¼ 1 2 3xþ 3x2 2 3x3 multiplied by 1þ x becomes

1 2 2x 2 3x 4: The newly obtained difference equation of order 4 suggests

an order 12 linear recurrence relation involving only terms with indices

whose differences are multiples of 3. Unfortunately, this difference equation

ynþ12 ¼ 8ynþ9 þ 36ynþ6 þ 54ynþ3 þ 27yn

is of little help in proving the particular divisibility properties as its coefficients

did not follow any nice divisibility patterns.

However, there is a general method providing us with a recurrence

relation of order p2 ðfor rpðaþ 1Þ ¼ 1 and p $ 3Þ such that all index

differences are divisible by p, and the coefficients exhibit some divisibility

patterns. We follow Gessel’s idea [2] and multiply both Na(x ) and Da(x ) of

Eq. (4) by DaðwxÞDaðw
2xÞ . . .Daðw

p21xÞ; where w is a primitive pth root of

unity. Since D*
a ðxÞ ¼ DaðxÞDaðwxÞ . . .Daðw

p21xÞ is invariant under

substituting wx for x, it must be a polynomial in x p. This allows us to p-

sect the coefficients of the sequence yk by multiplying its generating

function by D*
a ðxÞ: We are able to write

X1
k¼1

ykðp; aÞx
k ¼

N*
a ðxÞ

D*
a ðxÞ

; ð6Þ

where

N*
a ðxÞ ¼ x{ð1 2 xÞp21 þ axp21}

Yp21

j¼1

ðð1 2 wjxÞp 2 aðwjxÞpÞ

¼ b1xþ b2x2 þ . . . ;

with b1 ¼ 1 and

D*
a ðxÞ ¼

Yp21

j¼0

ðð1 2 wjxÞp 2 aðwjxÞpÞ ¼ 1þ cpxp þ c2px2p þ . . . ð7Þ

are polynomials of degree p 2 if rpðaþ 1Þ ¼ 1 and pðp 2 1Þ if a ¼ 21;

respectively. For example, we find an equivalent form of identity (5)X1
k¼1

ykð3; 2Þx
k ¼

xþ x2 þ 3x3 þ 12x5 þ 18x6 2 9x7 þ 9x8 þ 27x9

1 2 9x3 2 27x6 2 27x9
: ð8Þ
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If rpðaþ 1Þ ¼ 1 then by identities (6) and (7), and after determining yp, y2p,

. . .,yp 2, we can derive the recurrence relation ðn $ 1Þ

yðnþpÞp ¼ 2cpyðnþp21Þp 2 c2pyðnþp22Þp 2 . . . 2 cp 2 ynp; ð9Þ

and that’s all we need to evaluate ykp, for k . p: For a ¼ 21 and n $ 1 we

use

yðnþpÞðp21Þ ¼ 2cpyðnþp21Þðp21Þ21 2 c2pyðnþp22Þðp21Þ22 2 . . . 2 cðp21Þpynðp21Þ

ð10Þ

to evaluate ykðp21Þ; for k . p: The degree of the denominator in identity (6)

is the order of the difference Equations in Eqs. (9) and (10). However, the

order can be reduced by a factor of p as we do p-section. To apply case (c)

of Section “Divisibility via generating functions” we need

Lemma 1 If rpðaþ 1Þ ¼ 1 then rpðckpÞ $ k þ 1 for k ¼ 1; 2; . . . ; p 2 1

and rpðcp 2Þ ¼ p: If a ¼ 21 then rpðckpÞ $ k þ 1 for k ¼ 1; 2; . . . ; p 2 2

and rpðcðp21ÞpÞ ¼ p:

This lemma is crucial in proving the Theorem both for small and large

values of n. In the former case, for the initial values k ¼ 1; 2; . . . ; p; we

shall also need

Lemma 2 For rpðaþ 1Þ ¼ 1 we have rpðbkpÞ ¼ k for k ¼ 1; 2; . . . ; p:

For example, multiplying both sides of Eq. (8) by D*
2 ðxÞ and equating the

coefficients yields r3ðb3kÞ ¼ k; 1 # k # 3; by Lemma 2, and therefore,

r3ðy3kÞ ¼ k; 1 # k # 3:

Proof of Lemma 1 Binomial expansion yields

DaðxÞ ¼
Xp21

j¼0

p

j

 !
ð21Þjx j

 !
2 ðaþ 1Þxp:

We expand the denominator D*
a ðxÞ symbolically by counting the ways its

factors contribute to x kp, k ¼ 0, 1, . . . , p. We observed that D*
a ðxÞ is

actually a polynomial in x p; therefore, we need only these terms. Any

combination of p factors contributing x kp to the expansion can be

characterized by the number, ij, of polynomial factors in Eq. (7) in which

the term with x j is selected. For rpðaþ 1Þ ¼ 1 we getXp

j¼0

jij ¼ kp and
Xp

j¼0

ij ¼ p
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since each of the p factors has exactly one contributing term. By binomial

expansion and ignoring the factors of w, the contribution of any term with

the characterization (i0,i1,. . . ,ip) is a multiple of

p

0

 !i0 p

1

 !i1

· · ·
p

p 2 1

 !ip21

ð2a 2 1Þip : ð11Þ

We determine the exponent in the power of p which divides this quantity in

terms of (i0,i1,. . . ,ip). The exponent is at least p 2 i0 $ k and equality holds

if and only if (i0,i1,. . .ip) ¼ ( p 2 k, 0, 0, . . . , 0, k ). In this latter case there

are
p

k

 !
ways of choosing the k factors with x p. It follows that rpðckpÞ $ k þ 1 for

1 # k # p 2 1 and rpðcp 2 Þ ¼ p: In fact, cp 2 ¼ 2ðaþ 1Þp:

If a ¼ 21 then none of the p factors in Eq. (7) have a term involving

x p; therefore, we can remove the last factor of Eq. (11). In this case

p 2 i0 $ k þ 1 holds yielding rpðckpÞ $ k þ 1 for 1 # k # p 2 2; while

cðp21Þp ¼ pp: Note that ckp ¼ 0 is also true for k odd [2]. A

Proof of Lemma 2 We leave out the details but note that although

N*
a ðxÞ looks less structured than D*

a ðxÞ it is easier to describe the

relevant coefficients bkp; 1 # k # p: Actually, we are able to determine

bkp(mod p kþ1) as calculations similar to those in the proof of Lemma 1 lead

to

bkp ; ð21Þk21
p 2 1

k 2 1

 !
ððaþ 1Þk þ

p

k

 !p21

ð21ÞkÞ ðmod pkþ1Þ

for 1 # k # p 2 1 and bp 2 ¼ ðaþ 1Þp: The condition rpðaþ 1Þ ¼ 1

guarantees that rpðbkpÞ ¼ k: A

The proof of the Theorem is now complete by the p-sections y0n ¼ ynp

and c0i ¼ cip; and transforming identity (9) to identity (1) with d ¼ p: In

fact, Lemmas 1 and 2 guarantee the conditions in part (c) of Section

“Divisibility via generating functions”. By the lemmas, identities (9) and

(10) also imply Eqs. (2) and (3).

Note that the p-secting steps of the proof can be easily extended to

polynomial denominators different from D*
a ðxÞ with the original orders

preserved.
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