316

[77]

[78]
[79]

(80]
(81]

(82]

(83]

(84]

(85]
[86]
[87]
(88]

(89]

[90]
[91]
[52]
[93]
[94]
[95]

[96]

[97]

5 Constants Associated with Enumerating Discrete Structures

E. A. Bender and R. W. Robinson, The asymptotic number of acyclic digraphs. II, J
Combin. Theory Ser. B 44 (1988) 363-369; MR 90a:05098.

R. Kemp, A note on the number of leftist trees, Inform. Process. Lett. 25 (1987) 227-232.
R. Kemp, Further results on leftist trees, Random Graphs '87, Proc. 1987 Poznan conf.,
ed. M. Karonski, J. Jaworski, and A. Rucinski, Wiley, 1990, pp. 103-130; MR 92¢:05034.
R. E. Miller, N. Pippenger. A. L. Rosenberg, and L. Snyder, Optimal 2,3-trees, SIAM J.
Comput. 8 (1979) 42-59; MR 80c:68050.

A. M. Odlyzko, Periodic oscillations of coefficients of power series that satisfy functional
equations, Adv. Math. 44 (1982) 180-205; MR 84a:30042.

A. M. Odlyzko, Some new methods and results in tree enumeration, Proc. I 3% Manitoba
Conf. on Numerical Mathematics and Computing, Winnipeg, 1983, ed. D. S. Meek and G.
H. J. van Rees, Congr. Numer. 42, Utilitas Math., 1984, pp. 27-52; MR 85g:05061.

H. Prodinger, Some recent results on the register function of a binary tree, Random Graphs
‘85, Proc. 1985 Poznan conf, ed. M. Karonski and Z. Palka, Annals of Discrete Math. 33,
North-Holland, 1987, pp. 241-260; MR 89g:68058. '
H. Prodinger, On a problem of Yekutieli and Mandelbrot about the bifurcation ratio of
binary trees, Theoret. Comput. Sci. 181 (1997) 181-194; also in Proc. 1995 Latin American
Theoretical Informatics Conf. (LATIN), Valparaiso, ed. R. A. Baeza-Yates, E. Goles Ch,,
and P. V. Poblete, Lect. Notes in Comp. Sci. 911, Springer-Verlag, 1995, pp. 461-468; MR
98i:68212.

I. Yekutieli and B. B. Mandelbrot, Horton-Strahler ordering of random binary trees, J. Phys.
A 27 (1994) 285-293; MR 94m:82022.

T. E. Harris, The Theory of Branching Processes, Springer-Verlag, 1963; MR 29 #664.
K. B. Athreya and P. Ney, Branching Processes, Springer-Verlag, 1972; MR 51 #9242,

G. Sankaranarayanan, Branching Processes and Its Estimation Theory, Wiley, 1989; MR
91m:60156

P. Erdds and A. Rényi, On random graphs. I, Publ. Math. (Debrecen) 6 (1959) 290-297;
also in Selected Papers of Alfréd Rényi, v. 2, Akadémiai Kiado, 1976, pp. 308-315; MR
22 #10924.

B. Bollobas, The evolution of random graphs, Trans. Amer. Math. Soc. 286 (1984) 257-274;
MR 85k:05090.

B. Bollobas, Random Graphs, Academic Press, 1985; MR 87f:05152.

S. Janson, T. Luczak, and A. Rucinski, Random Graphs, Wiley, 2000; MR 2001k:05180.
S. Janson, D. E. Knuth, T. Luczak, and B. Pittel, The birth of the giant component, Random
Structures Algorithms 4 (1993) 231-358; MR 94h:05070.

M. A. Weiss, Data Structures and Algorithm Analysis in C++, 2™ ed., Addison-Wesley,
1999, pp. 320-322.

A.C.C. Yao, On the average behavior of set merging algorithms, 8" 4CM Symp. on Theory
of Computing (STOC), Hershey, ACM, 1976, pp. 192—195; MR 55 #1819.

D. E. Knuth and A. Schénhage, The expected linearity of a simple equivalence algorithm,
Theoret. Comput. Sci. 6 (1978) 281-315; also in Selected Papers on Analysis of Algorithms,
CSLI, 2000, pp. 341-389: MR 81a:68049.

B. Bollobas and I. Simon, Probabilistic analysis of disjoint set union algorithms, SIAM J.
Comput. 22 (1993) 1053-1074; also in 17" ACM Symp. on Theory of Computing (STOC),
Providence, ACM, 1985, pp. 124-231; MR 94:05110.

5.7 Lengyel’s Constant

5.7.1 Stirling Partition Numbers

Let S be a set with n elements. The set of all subsets of S has 2" elements. By a partition
of S we mean a disjoint set of nonempty subsets (called blocks) whose union is S. The
set of partitions of S that possess exactly k& blocks has S, ; elements, where §, ; 1s a
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Stirling number of the second kind. The set of all partitions of S has B, elements,
where B, is a Bell number:
n 1 0 jn d”
B, = Snk = — — = ——exple’ — 1) .
; e J! dx" =0

For example, S41 =1, Ss2 =7, Sa3 =6, S44 =1, and B4 = 15. More generally,
Sp1=1,8,=2""—1and Sn3 = %(3"‘1 + 1) — 2”1, The following recurrences
are helpful [1-4]:

1 ifn =0, )
Sno = {O ifn> 1, Snk =kSp 1k + Spcrpm fn=>k>1,

n—1

By=1, B,=) ("{")B:.

k=0

and corresponding asymptotics are discussed in [5-9].

5.7.2 Chains in the Subset Lattice of S

If U and V are subsets of S, write U C V if U is a proper subset of V. This endows
the set of all subsets of S with a partial ordering; in fact, it is a lattice with maximum
element S and minimum element @#. The number of chains 9 =U, C U, C--- C
Uir—1 C U, = S of length k is k!S, x. Hence the number of all chains from @ to S is

[1,6,10]
" 2 jn ] ] d” t/o1 A\
Susu=3 F =3t (3) = | ~5(mm)
par = 2 2 dx"2—e*| _, 2 \In(2)

where Li,(x) is the polylogarithm function. Wilf [10] marveled at how accurate this
asymptotic approximation is.

If we further insist that the chains are maximal, equivalently, that additional proper
insertions are impossible, then the number of such chains is n! A general technique due
to Doubilet, Rota & Stanley [11], involving what are called incidence algebras, can be
used to obtain the two aforementioned results, as well as to enumerate chains within
more complicated posets [12].

As an aside, we give a deeper application of incidence algebras: to enumerating
chains of linear subspaces within finite vector spaces [6]. Define the g-binomial
coefficient and g-factorial by

[]@ -b
j=1
= k n—k ’
[[@-D @ -1
j=1 J=1

=0+ +q+q> -Q+q+--+q"h,

(&)
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where g > 1. Note the special case in the limitasg — 1*. Consider the n-dimensional
vector space ]FZ over the finite field F,, where g is a prime power [12—16]. The number

of k-dimensional linear subspaces of ]F; is (Z

of ]F; 1s asymptotically Ceq”:/4 if n is even and coq"z/4 if n is odd, where [17,18]

oc e 2
_ k=—00

k=—00

)q and the total number of linear subspaces

Ce= ———, Co= —o

[Ta-9 [Ta-4¢)

We give a recurrence for the number x, of chains of proper subspaces (again, ordered
by inclusion):

n—1
xi=1. x, =1 +Z(:)qu forn > 2.
k=1

For the asymptotics, it follows that [6, 17]

1

e

1 n n ] A
(;) [le/-D==@-1e- D@ -1 @ -,
Jj=1

where ¢, (x) is the zeta function for the poset of subspaces:

oC k

X
{e(x) = Z q - 1)(q2 — 1)(q3 _ 1)...(qk -1

k=1
and > 0 is the unique solution of the equation ¢,(r) = 1. In particular, when g = 2,
we have ¢, = 7.3719688014 ..., c, = 7.3719494907 . .., and

A nin+1)

XHN_'Q'zzs

rﬂ
where r = 0.7759021363 ..., 4 = 0.8008134543 ..., and

e 1
0=]] (1 ~ —) = 0.2887880950 . ..
k=1

ok
is one of the digital search tree constants [5.14]. If we further insist that the chains are
maximal, then the number of such chains is [n!],.

5.7.3 Chains in the Partition Lattice of S

We have discussed chains in the poset of subsets of the set S. There is, however, another
poset associated naturally with S that is less familiar and more difficult to study: the
poset of partitions of S. Here is the partial ordering: Assuming P and @ are two
partitions of S, then P < Q if P # Q and if p € P implies that p is a subset of g for
some g € Q. In other words, P is a refinement of Q in the sense that each of its blocks
fits within a block of Q. For arbitrary n, the poset is, in fact, a lattice with minimum
element m = {{1}. {2}, .... {n}} and maximum element M = {{1,2, ..., n}}.
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{{1.2,3}}

{12}, 43} {1, 3}, 42}} 12,35 11

L {23 (313

Figure 5.10. The number of chains m < P; < M in the partition lattice of the set {1, 2, 3} 1s
three.

What is the number of chains m = Ph < P < P, <--- < Py < Pr=M of
length & in the partition lattice of S? In the case n = 3, there is only one chain fork = 1,
specifically, m < M. For k = 2, there are three such chains as pictured in Figure 5.10.

Let Z, denote the number of all chains from m to M of any length; clearly Z;, =
Z; =1 and, by the foregoing, Z3 = 4. We have the recurrence

Z, = S Sn‘ka
k=1

and exponential generating function

= Z

Zx)y=Yy_ “Exm, 2Z(x) = x + Z(eF - 1),

£~ n!
but techniques of Doubilet, Rota & Stanley and Bender do not apply here to give
asymptotic estimates of Z,. The partition lattice is the first natural lattice without
the structure of a binomial lattice, which implies that well-known generating function
techniques are no longer helpful.

Lengyel [19] formulated a different approach to prove that the quotient
P Z”

- (n!)2(2 ln(z))—nn—l—lnm/}

must be bounded between two positive constants as n — co. He presented numerical
evidence suggesting that r,, tends to a unique value. Babai & Lengyel [20] then proved a
fairly general convergence criterion that enabled them to conclude that A = lim,_, 7,
existsand A = 1.09. ... The analysis in [19] involves intricate estimates of the Stirling
numbers; in [20], the focus is on nearly convex linear recurrences with finite retardation
and active predecessors.

In an ambitious undertaking, Flajolet & Salvy [21] computed A =
1.0986858055 . .. . Their approach is based on (complex fractional) analytic iterates of
exp(x) — 1 and much more, but unfortunately their paper is presently incomplete. See
[5.8] for related discussion of the Takeuchi-Prellberg constant.

By way of contrast, the number of maximal chains is given exactly by n!(n —
1)1/2*~! and Lengyel [19] observed that Z, exceeds this by an exponentially large
factor.

Fn
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5.7.4 Random Chains

Van Cutsem & Ycart [22] examined random chains in both the subset and partition
lattices. It is remarkable that a common framework exists for studying these and that,
in a certain sense, the limiting distributions of both types of chains are identical. We
mention only one consequence: If x, = k/n is the normalized length of the random
chain, then

1
”llngc E(x,) = _2—Tn_(5 = 0.7213475204.. ..

and a corresponding Central Limit Theorem also holds.
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5.8 Takeuchi-Prellberg Constant
In 1978, Takeuchi defined a triply recursive function [1,2]

t(x,y,z)= Y ifx <,

VI Z Ve =1, y,2), t(y — 1,2,x), t(z — 1. x, y)) otherwise

that is useful for benchmark testing of programming languages. The value of ¢(x, y, z)
is of no practical significance; in fact, McCarthy [1, 2] observed that the function can
be described more simply as

y ifx <y,
tx,y,z)= {z ify <z,

) otherwise.
x otherwise,

The interesting quantity is not #(x, y, z), but rather T'(x, y, z), defined to be the
number of times the otherwise clause is invoked in the recursion. We assume that the
program is memoryless in the sense that previously computed results are not available at
any time in the future. Knuth [1, 3] studied the Takeuchi numbers 7, = T(n, 0, n + 1):

=0 T1=1 Th=4 T3=14, T, =53, Ts =223, ...

and deduced that

e" In(n)—n In(In{(n))—n n In{n)—n+In{n)

<T,<e

for all sufficiently large n. He asked for more precise asymptotic information about the
growth of 7},.
Starting with Knuth’s recursive formula for the Takeuchi numbers

n \ " n—1 1
T = Y[ (7)) = oD ] e + 2 Gy
k=0 k=1

and the somewhat related Bell numbers [5.7]

n

Br+1 =Z(Z)Bn—k, Bo=1,Bi=1, Bp=2, B3=5, Bs=15 Bs=52,....
k=0

Prellberg [4] observed that the following limit exists:

T,
¢ = lim —————— =12.2394331040. ..,
n—>o0 B, exp (3 W2)
where W, exp(W,) = n are special values of the Lambert W function [6.11].
Since both the Bell numbers and the W function are well understood, this provides

an answer to Knuth’s question. The underlying theory is still under development, but
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Prellberg’s numerical evidence is persuasive. Recent theoretical work [5] relates the
constant ¢ to an associated functional equation,

x Tz —2%) !
T(z):nzzon:.T(Z): . (-2 -z+z22)

in a manner paralle] to how Lengyel’s constant [5.7] is obtained.
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5.9 Polya’s Random Walk Constants

Let L denote the d-dimensional cubic lattice whose vertices are precisely all integer
points in d-dimensional space. A walk w on L, beginning at the origin, is an infinite
sequence of vertices wg, wi, @y, w3, ... With wp = 0 and |wj41 — w;| =1 for all j.
Assume that the walk is random and symmetric in the sense that, at each time step,
all 2d directions of possible travel have equal probability. What is the likelihood that
w, = 0 for some n > 0? That is, what is the retarn probability p;?

Polya [1-4] proved the remarkable fact that py = p, = 1 but p; < 1ford > 2. Mc-
Crea & Whipple [5], Watson [6], Domb [7] and Glasser & Zucker [8] each contributed
facets of the following evaluations of p; = 1 — 1/m3 = 0.3405373295 . .., where the
expected number m3 of returns to the origin, plus one, is

3 i bt bt 1
M= 2n ) / / / 3 — cos(f) — cos(p) — cos(¥) dodedy

-0 =T =7

2<18+12\/——10\/§—7\/5)K[(2—\/§)(\/——\/§)]2

1
==

oo 4
=3 <18 +12v2 - 104/3 - 7\/5) {1 + 2k;exp(—\/5nk2)}

V6 1 5 7 11
= T{(—=|r|{=]|r|— — ) = 1.5163860591 ... ..
3273 (24) (24) (24) r (24) 638

Hence the escape probability for a random walk on the three-dimensional cubic lattice
is 1 — p3 = 0.6594626704 . ... In these expressions, K denotes the complete elliptic
integral of the first kind [1.4.6] and " denotes the gamma function [1.5.4]. Return and
escape probabilities can also be computed for the body-centered or face-centered cubic




