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Abstract

Consider a sports competition in which participants alternately perform a scored task (such as the distance a discus is thrown),
and a list of the top m scores is updated throughout. We consider the average number and distribution of records among the top m
throughout and at the end of the competition. We also answer questions concerning the number of times the list changes, when each
change occurs, and the waiting times between changes. We touch on results concerning changes in l-records and the values within
the list.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Playing video games one day, one of the authors, David Collins, was prompted to enter his name upon achieving a
high score. Rather than his name, he entered “best” when the score was the highest yet attained up to that point and
“other” if the score fell within the top m=5 but was not a record. He observed that the average number of “best” scores
retained in the top m seemed to remain fixed over time. In fact, it was equal to the harmonic number H5=1+ 1

2 +· · ·+ 1
5 .

Of course, a devoted sports fan has an infinite appetite for records, however, overly refined, such as “second best” scores,
etc., and needs no excuse for hairsplitting statistics, e.g., frequency of changes among the top m. Motivated by this
observation, we investigate problems related to records and score keeping regimes.

We will use the following assumptions. The competition consists of a total of n turns. At all times, only the m
highest scores are retained. Throughout the paper we assume that the scores are independent and identically distributed
random variables with some continuous distribution. Thus, all the n scores are different and we do not consider the
possibility of improvement in scoring with time. It is remarkable that only the record values are dependent on the score
distribution and not the record times, inter-record times, or the number of records (cf. Arnold et al., 1998). A score
qualifies to be “best” if her score, at the time she achieves it, is higher than any other score. In Theorem 1 we determine
the distribution of the number of “best” scores when the top m scores are stored and kept updated. Complementary
results and generalization are considered in Theorem 2 and in Section 5.

Records and their various generalizations have been extensively studied in the literature, e.g., in Glick (1978), Arnold
et al. (1998), and Nevzorov (2001), often by applying advanced theory. Here we derive Theorem 5 about the first moment
of the distribution of the so called mth record positions by a purely combinatorial argument.
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2. The static approach: at the end

The average number of “best” scores within the top m scores is the harmonic number Hm = ∑m
i=1 1/i, m�1. In

order to see this we denote the sequence of observations by {X1, X2, . . . , Xn} and define Yn to be the number of “best”
scores in the top m after n games. In fact, Yn = ∑m

i=1Vi with indicator variable Vi = 1 exactly when the ith observation
to enter the top m entries overall was observed before any greater value. More formally, let t1 < t2 < · · · < tm be the
positions of the top m entries Xt1 , Xt2 , . . . , Xtm (i.e., Xti > Xl for all l �= ti i = 1, 2, . . . , m). Clearly, P(Vi = 1) =
P(Xti is “ best” at time of entry) = 1/i and thus, EYn = ∑m

i=1P(Vi = 1) = Hm. This idea can be developed further
to include the distribution of Yn, as we will see in Theorem 1.

Let s(m, k) denote the unsigned Stirling number of the first kind with parameters m and k, i.e., the number of
permutations over an m-element set with exactly k cycles. We have the somewhat surprising:

Theorem 1. Let Yn denote the number of “best” scores among the top m after n games. The random variable Yn, n�m,
has a stationary distribution. In fact, P(Yn = j) = s(m, j)/m!, j = 1, 2, . . . , m.

Proof. Regardless of n, n�m, we keep and update the top m scores. Therefore, at the end we have the m top scores
overall. Now in fact, only the ranks and positions of these scores relative to each other matter, for any other score
among the n, being smaller, has no impact on the record status (i.e., “best” vs. “other”) of the m. Thus, it is enough
to count the number of permutations on the set {1, 2, . . . , m} with j records. By a standard combinatorial argument
based on the cycle-representation of permutations, the number of permutations with j records is equal to the number
of permutations with j cycles, as observed by Rényi, cf. Blom et al. (1994), Comtet (1974), and Lovász (1979). The
result follows. �

3. Successive observations

We are also interested in modeling the possible changes here by a Markov chain with nonstationary transition
probabilities (often referred to as a nonhomogenous Markov chain). As above, let Yn denote the number of “best”
scores among the top m after n games. Clearly, if m = 1 then Yn = 1 for all n�1.

For the combined probabilities we get:

Theorem 2. For m�2, we have

r
(n)
j,j+a = P(Yn+1 = j + a ∩ Yn = j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(m − 1, j)

(m − 2)!
1

m(n + 1)
if a = 1 and 1�j �m − 1,

s(m − 1, j − 1)

(m − 2)!
1

m(n + 1)
if a = −1 and 2�j �m,

P (Yn = j)−
r
(n)
j,j−1 − r

(n)
j,j+1 if a = 0 and 2�j �m − 1,

n

m(n + 1)
if a = 0 and j = 1,

n − m + 2

m!(n + 1)
if a = 0 and j = m.

Proof. To determine P(Yn+1 = j + 1 ∩Yn = j) we consider all permutations with j records over m (i.e., an m-element
set) in which the smallest record is not the mth in rank (in fact, not of the lowest rank with respect to the overall
2nd, 3rd, . . . , m + 1th in the set of the n + 1 elements): s(m, j) − s(m − 1, j − 1) = (m − 1)s(m − 1, j), thus
P(Yn+1 =j +1∩Yn =j)= (m−1)s(m−1,j)

m!
1

n+1 , for the n+1th element is of the highest rank among the n+1 elements.
To determine P(Yn+1 = j − 1 ∩Yn = j) we consider all permutations with j records over m with the smallest record

being the rank m element which is exceeded by the n + 1th element, therefore, the probability is s(m−1,j−1)
m!

m−1
n+1 .

All other cases can be derived in a similar direct fashion (or by Theorem 1). �

Please cite this article as: David Collins et al., Keeping scores, Journal of Statistical Planning and Inference (2006), doi: 10.1016/j.jspi.2006.07.006

http://dx.doi.org//10.1016/j.jspi.2006.07.006


ARTICLE IN PRESS
D. Collins et al. / Journal of Statistical Planning and Inference ( ) – 3

We note some consequences of this theorem. Surprisingly, P(Yn+1 = j + 1 ∩ Yn = j) = P(Yn+1 = j ∩ Yn = j +
1) holds for all j : 1�j �m − 1 and n�1. Since Yn has the stationary distribution given in Theorem 1, we get
pj,j+1 = P(Yn+1 = j + 1|Yn = j) = (m−1)s(m−1,j)

s(m,j)
1

n+1 , pj+1,j = P(Yn+1 = j |Yn = j + 1) = (m−1)s(m−1,j)
s(m,j+1)

1
n+1 , and

pj,j = P(Yn+1 = j |Yn = j) = P(Yn = j |Yn+1 = j) for the transition probabilities. With a little work, these time
dependent probabilities also lead to the stationary distribution of Yn found in Theorem 1. We also note that the above
properties establish that the Markov chain is reversible.

One might be interested in calculating the expected number of new games until a change in the number Yn of “best”
scores occurs. By Theorem 2 we get that the expected waiting times are infinite. For example, given that Yn=1 for some
n�m, if it takes exactly W = j new games to have two “best” scores in the top m then the corresponding probability of
this happening is n

n+1
n+1
n+2 · · · n+j−2

n+j−1 (1 − n+j−1
n+j

) = n
(n+j−1)(n+j)

, and the conditional expected value of W is infinite.
The proof is similar for Yn = j with j : 2�j �m, yielding the infiniteness of the expected waiting time.

4. Relaxed version

In many athletic events, in track and field for instance, the top m= 3 scores are displayed, rather than just the current
record. This has the advantage of making the event more interesting to spectators, for there will be considerably more
changes on the leader board than if only the top score (m= 1) is updated. In fact, we will see that the expected “waiting
times” for changes among the top m scores are finite if m�2 in contrast with the case m = 1. (A comprehensive study
of the case m = 1 can be found, e.g., in Arnold et al., 1998, pp. 25–28.)

Accordingly, we turn to a relaxed version of the original problem and study Zn, the cumulative number of changes
with respect to the top m entries with no regard to the actual qualification “best” or “other,” i.e., we define Zn to be
the number of times the membership of the top m items, i.e., the number of times the mth order statistic changes. If
m�2 then the membership can change without changing the actual “best” vs. “other” make up. We note that the event
that the mth order statistic changes is often described by saying that an mth record (cf. Nevzorov, 2001) or a Type 2
m-record (cf. Arnold et al., 1998) is established. In other words, these records are the mth largest yet seen.

We also define Ni as the index (position) of the ith change in the sequence Zn, n�1. Clearly, Zi = Ni = i, i =
1, 2, . . . , m, and P(Nm+1 > k)=1/

(
k
m

)
if k�m since Nm+1 > k (i.e., the m+1th change has not yet occurred when k

elements have been ordered successively) occurs exactly if the highest m elements among the k elements are observed

before the other k − m elements which happens with probability 1/
(

k
m

)
. This yields

ENm+1 =
∑
k �0

P(Nm+1 > k) = m +
∑
k �m

1(
k
m

) = m2

m − 1
, (1)

where the last equation follows by a standard identity for the reciprocal sum of binomial coefficients. It follows that
ENm+1 is finite which is markedly different from the case m = 1 in which EN1+i = ∞ for all i�1, cf. Glick (1978).

Finding the distribution of the index of the m + ith change, Nm+i , i > 1, which will be addressed momentarily,
requires the distribution of Zn. We derive this distribution by introducing indicator variables. Let Zn = ∑n

i=1Ui with
Ui = 1 if the ith observation caused a change in the current set of top m. Note that Ui = 1, if i�m, and

P(Ui = 1) = m

i
if i�m, (2)

for this happens if the ith observation is among the top m. In fact, the Uis are independent random variables with
P(Ui = 1) = m(i−1)!

i! = m
i

, cf. Blom et al. (1994), and

E(Zn) = m

(
1 + 1

m + 1
+ · · · + 1

n

)
∼ m ln n

as n → ∞, cf. Glick (1978).
Now we establish the probability generating function of Zn for n�m+1: E(sZn)=sm

∏n
i=m+1E(sUi )=sm

∏n
i=m+1

(1 − m
i

+ m
i
s) = sm−1 ms

m
(ms+1)(ms+2)···(ms−m+n)

(m+1)(m+2)···n = sm−1(
ms−m+n
n−m+1 )/(

n
n−m+1 ) by identity (2). Note that the generating

function (a polynomial) for the unsigned Stirling numbers of the first kind is (s +n−1)n = (
s+n−1

n
)n!=∑n

i=1s(n, i)si
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giving E(sZn) = sm−1∑n−m+1
i=1

s(n−m+1,i)
(n)n−m+1

(ms)i , with (a)b denoting the falling factorial a(a − 1) · · · (a − b + 1), after
substituting ms and n − m + 1 for s and n, respectively. This leads to:

Theorem 3. We have Zn = n for 1�n�m while for i�1 and n�m + i − 1 we have that

P(Zn = m + i − 1) = mis(n − m + 1, i)

(n)n−m+1
. (3)

In particular, P(Zn = i) = s(n,i)
n! , if m = 1 which is of course the same as Theorem 1 but with n rather than m.

We can also derive for k�m + 1 that

P(Nm+i = k) = P(Zk−1 = m + i − 1)P (Uk = 1)

= P(Zk−1 = m + i − 1)(m/k), (4)

and thus, ENm+i = ∑∞
k=m+ikP (Nm+i = k) = m

∑∞
k=m+iP (Zk−1 = m + i − 1) results in

ENm+i = mi+1
∞∑

k=m+i

s(k − m, i)

(k − 1)k−m

(5)

which holds for every i�0 by (3) and setting s(0, 0) = 1.
We can now return to the task of determining the distribution of Nm+i , i�1. The distribution of Nm+i is described

by identities (3) and (4):

Theorem 4. For i�0, k�m + i and with s(0, 0) = 1, we have

P(Nm+i = k) = mi+1s(k − m, i)

(k)k−m+1
.

Remark. For m = 1 we get N1 = 1, and furthermore
∑n

k=i+1kP (N1+i = k) = ∑n
k=i+1

k s(k−1,i)
k! = s(n,i+1)

(n−1)! . Taken
asymptotically as n → ∞, we get

EN1+i ∼ (ln n)i

i! , i = 1, 2, . . . , (6)

in agreement with Wilf (1995).

In contrast, we will be able to determine the (finite) expected value of Nm+i for m�2 exactly in Theorem 5.

Example. If m = 2 then we get EN1 = 1, EN2 = 2, and EN3 = 2
∑∞

n=3P(Zn−1 = 2) = 2
∑∞

n=32s(n − 2, 1)/

(n − 1)! = 4 which agrees with 2 + ∑∞
k=21/(

k
2 ) = 4 in (1). Note that P(N2+i = n) = 2i+1s(n − 2, i)/n!. We also get

(Comtet, 1974, p. 217) that EN4 = 2
∑∞

n=4P(Zn−1 = 3) = 2
∑∞

n=44s(n − 2, 2)/(n − 1)! = 8
∑∞

n=4
Hn−3

(n−1)(n−2)
= 8 and

EN5 = 2
∑∞

n=5P(Zn−1 = 4)= 16
∑∞

n=5s(n− 2, 3)/(n− 1)!= 16
∑∞

n=5
1

2(n−1)(n−2)
(H 2

n−3 −∑n−3
i=1

1
i2 )= 16 by (3)–(5).

The pattern seen above is formalized in the general:

Theorem 5. For m�2 and i�0, we have that

ENm+i = mi+1

(m − 1)i
.

Proof. To give the main idea of the proof, we start with the case of m=2 stating that EN2+i =2i+1. (Clearly, EN1 =1
and EN2 = 2.) If i�1 then Eqs. (3) and (4) with m = 1 imply the identity

∑
n� iP (Ni = n) = 1 = ∑

n� i
s(n−1,i−1)

n! .

Now EN2+i = 2i+1∑
n� i+2

s(n−2,i)
(n−1)! = 2i+1 follows by (5).

Please cite this article as: David Collins et al., Keeping scores, Journal of Statistical Planning and Inference (2006), doi: 10.1016/j.jspi.2006.07.006

http://dx.doi.org//10.1016/j.jspi.2006.07.006


ARTICLE IN PRESS
D. Collins et al. / Journal of Statistical Planning and Inference ( ) – 5

We can proceed similarly if m > 2. In identity (5) we decrease both parameters n and m, i.e., we set n = n′ + 1 and
m=m′+1 for n and m, respectively. A closer look at the summation part in (5),

∑
n�m+i

s(n−m,i)
(n−1)n−m

=∑
n′ �m′+i

s(n′−m′,i)
(n′)n′−m′ =

m′∑
n′ �m′+i

s(n′−m′,i)
(n′)n′−m′+1

= m′
(m′)i+1

∑
n′ �m′+iP (Nm′+i =n′) reveals that it is equal to m′/(m′)i+1 =1/(m′)i =1/(m−1)i

byTheorem 4. The proof is complete. �

Note that Theorem 5 generalizes well, and for the factorial moment of order r = 1, 2, . . . , E((Nm+i )r ) = E(Nm+i

(Nm+i − 1) · · · (Nm+i − r + 1)), the identity

E((Nm+i )r ) = mi+1(m − 1)!
(m − r)i+1(m − r − 1)!

holds according to Nevzorov (2001, p. 89), by Martingale theory.
Theorem 5 means that on average, changes in the membership list of the top m scores, i.e., in Zn, are observed at a

slower and slower pace: more precisely, exponentially slowly since ENm+i = m(1 + 1
m−1 )i as i grows. The waiting

times, �i+1 = Nm+i+1 − Nm+i , i�0, also have finite expected values if m�2. In fact, we get that

E�i+1 =
(

1 + 1

m − 1

)i+1

, i�0. (7)

The waiting time, i.e., the time that the mth order statistic spends at a value, is called the sojourn in that value, cf. Bunge
and Goldie (2001). Note that Nm+i = k if the ith sojourn ends at time k.

5. Other records, record values and positions

In this section we try to generalize Theorem 2 where we considered the “best” scores only. We have only a partial
result which makes use of the notion of l-records that will be discussed presently. When processing sequentially, relative
ranks (other than the top) and their related quantities, e.g., the positions and the values of the second best (also called
near-records or 2-records), third best, etc. observations also can be studied. For a general l�1, we refer to these records
as Type 1 l-records (cf. Arnold et al., 1998 or simply l-records), i.e., the Nth observation XN is an l-record if exactly
l − 1 previous observations are larger than XN . (In this nomenclature, the 1-records are simply the records, while
l-records without reference to l, l�2, are often called partial records.)

From now on let l�1, r �1, and Nl,r denote the position of the rth l-record.
We note that by a beautiful result of Ignatov (1981), the value sets Rl (with elements XNl,1 < XNl,2 < · · ·) of the

l-records, l = 1, 2, . . . , are independent and identically distributed random sets (i.e., XNl1,i
and XNl2,i

are i.i.d. random
variables for i = 1, 2, . . . , l1 �= l2). Thus, the smallest elements of the value sets follow the original distribution.
For other values of these sets a transformation comes to the rescue, for record values submit to another invariance
principle through a clever transformation. Assume that the observations follow the continuous distribution F(x) which
is strictly increasing over its support set. One can analyze the record values through the monotone transformation
G(X) = − ln (1 − F(X)). The transformed record value G(XN1,r

) has gamma distribution with r degrees of freedom,
cf. Glick (1978). For example, if the Xis have exponential distribution with parameter 1 then XN1,r

has gamma
distribution with parameters r and 1. Note that for the random permutation (X1, X2, . . . , Xn) of {1, 2, . . . n}, we have
EXN1,r

∼ n(1 − 2−r ) by Wilf (1995), while for the continuous uniform distribution over the interval [0, n], the
invariance and some calculation lead to the equality EXN1,r

= n(1 − 2−r ).
We can combine the first m record value sets R1,R2, . . . ,Rm, and reorder their entries to get the sequence

Q
(m)
1 < Q

(m)
2 < · · ·. By Theorem 4.1 in Bunge and Goldie (2001) we have that

E(�i+1 |Q(m)
i+1) = 1

1 − F(Q
(m)
i+1)

= eG(Q
(m)
i+1)

and this fact combined with the previous transformation can be used to derive an alternative proof of identity (7). A
similar derivation follows by extending identity (2.6.4) (Arnold et al., 1998, p. 29) to mth records.

As far as the positions of the l-records are concerned, there is another nice invariance property for the transition
probabilities for the consecutive positions of the l-records. Independently of l and r, P(Nl,r+1 = j |Nl,r = k) = k

(j−1)j
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for all j > k� l, though with different initial distributions: P(N1,1 =1)=1 and P(Nl,1 = j)= l−1
j (j−1)

with j � l�2, cf.

Blom et al. (1990). For the unconditional distribution P(Nl,r = j)= l−1
j

∑
l � i1<···<ir=j

1∏r
t=1(it−1)

for j − r + 1� l�2

by Blom et al. (1990).
If we generalize Yn of Sections 2 and 3 by defining Yn,l (with Yn = Yn,1) to be the number of l-records that

made the final top m entries after n games, then clearly we have that Yn,l �m − l + 1, m� l�1. (Note that Yn,l can
drop to zero if l�2.) Let Xi:n, i = 1, 2, . . . , n, denote the ith order statistic of the original scores X1, X2, . . . , Xn,
i.e., X1:n > X2:n > ... > Xn:n. The relation between l-records and the mth order statistic is that Yn,l = k exactly if
k = |{r |XNl,r

�Xm:n, Nl,r �n}|. As a potential follow up problem, the interested reader is invited to extend Theorems

1 and 2 to find the distribution of Yn,l for l�2. It is fairly easy to show that {P(Yn,l =k)}m−l+1
k=0 ={m−1

m
, 1

m
} for l=m�2,

and {v, v
m−1 , v

2(m−1)
} for l = m − 1�2 with v = (1 + (m − 1)−1 + (2(m − 1))−1)−1, by using transition probabilities.

Note that in general, tridiagonal matrices of transition probabilities correspond to reversible Markov chains, making
the determination of the stationary distribution easy.
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