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Abstract Two teams play a series of games until one team accumulates m more
wins than the other. These series are fairly common in some sports provided that
the competition has already extended beyond some number of games. We generalize
these schemes to allow ties in the single games. Different approaches offer different
advantages in calculating the winning probabilities and the distribution of the duration
N , including difference equations, conditioning, explicit and implicit path counting,
generating functions and a martingale-based derivation of the probability and moment
generating functions of N . The main result of the paper is the determination of the
exact distribution of N for a series of fair games without ties as a sum of independent
geometrically distributed random variables and its approximation.

Keywords Gambler’s ruin · Distribution of the duration · Martingales ·
Probability and moment generating functions · Limit theorem ·
Chebyshev polynomial of the first kind

1 Introduction

Two teams play a series of games until one team accumulates m more wins than the
other. Each game has three possible outcomes: team (or player as used interchangeably
in this paper) A wins with probability p, B wins with probability q (0 < p, q < 1), or
they tie with probability r = 1 − p − q ≥ 0. The series ends when one team has won
m more games than the other and thus becomes the winner of the series. From now
on P(A) and P(B) = 1 − P(A) denote the respective probabilities that teams A and
B win the series, and N is the number of games played in the series or the duration.
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The purpose of any series is to magnify the differences between the teams. Tennis
is discussed in Kemeny and Snell (1960) (in which “points” and “game” take on the
role of game and series of games, respectively) as a hybrid between two popular pro-
cedures. To win a “game” in tennis the winner is required to have four wins (as in the
World Series or a “4 best of 7” series) and be ahead by two. Apparently, Bernoulli was
the first to analyze tennis. He found a difference-equation-based double recurrence
for the winning probability P(A) and showed that P(A) can be written as a ratio
of two seventh degree polynomials in p/q (cf. Blom et al. 1994). He also proposed
handicapping in favor of the weaker player in order to balance P(A) and P(B).

If p = q = 1/2 then the World Series with m2/2 required wins and the winning by
m games (or win-by-m games) series are comparable in the sense that they yield an
approximate mean duration of m2 for large values of m, cf. Feller (1968), Kemeny and
Snell (1960), Lengyel (1993), and Menon and Indira (1983). (For the asymptotic mag-
nitude of the variance see Menon and Indira (1983).) In the general case, the former
magnifies minute differences in p − q by about 0.8m, while the latter multiplies them
by m, thus making the latter series more efficient and favorable. Any mixture, e.g., a
“game” in tennis, lies in between in terms of efficiency. In fact, Siegrist (1989) studied
special hybrids, the (n, k) contests in which the first team or player to win at least n
games and to be ahead of its opponent by at least k games wins the contest. Champi-
onship series are often in a (4, 1) format (e.g., World Series), a tennis “game” is in a
(4, 2) format while a tennis set (without tiebreaker) is in a (6, 2) format. Our win-by-m
games problem is simply a contest in the (m, m) format. Siegrist obtained results for the
probability of winning and the expected length of the (n, k) contest, and compared dif-
ferent formats from the point of view of the duration and the power of these contests as
“tests” in order to determine the stronger team or player. For example, he observed that
(3, 2) is a better format than (4, 1) in both senses if p and q are sufficiently close to 0.5.

Gambler’s ruin problems offer a special case of the win-by-m games series. In
fact, in this paper we will only consider this case. Assume that each of two players
has a capital of m dollars. In each game a dollar can change hands between the two
players: player A pays a dollar to player B with probability p or a dollar is paid to
player A by player B with probability q, and no money is exchanged with probability
r = 1 − p − q. The game is over when one player goes bankrupt, i.e., when the other
player amasses m more wins.

In some cases, and typically when we want to determine the winning probabilities
only, we can ignore games that end in a tie, and therefore, we will then use

p′ = p

p + q
and q ′ = q

p + q
(1)

to denote the probability of winning and losing a game, respectively, given that the
game is not a tie.

In Sect. 2, we give a brief historical overview. Various random walk based
approaches are presented in Sect. 3. They lead us to different derivations of the winning
probabilities but not necessarily of the expected duration E(N ).

The final Sect. 4 is devoted to martingales, and it shows a fairly simple way to derive
the probability generating function pm(x, p, q) and the moments of N . We determine
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the exact distribution of N and some of its asymptotic properties for p = q = 1/2
in Theorems 5 and 6, by using its moment generating function. We prove that N can
be viewed as a sum of independent but not identically distributed random variables
of various geometric distributions. The main results of the paper are summarized in
Theorems 3, 5, and 6. Some details will be left to the reader.

A generalization of the gambler’s ruin problem to higher dimensions is considered
in Kmet and Petkovšek (2002). The exact and asymptotic expected duration is deter-
mined in some special cases with identical goals in each dimension. It corresponds to
playing a series of different types of games and stopping when a player wins by m
games in any type.

Interested readers can find other ways of generalizing gambler’s ruin in Flajolet and
Huillet (2008). They discuss an urn-based model which can be applied to a modification
of the gambler’s ruin in which the single game winning probabilities are affected by
the number of previous wins and losses, e.g., the winning probability increases as the
accumulated number of wins does. This modification results in a decreased expected
duration. The authors exhibit limit theorems and a decomposition of the duration into
a sum of independent random variables of different geometric distributions in the case
corresponding to winning by m games.

2 Gambler’s ruin by difference equations and other approaches

Gambler’s ruin problems are typically represented by a random walk on the set of
integers. A point moves to the right or to the left with probability p or q, or stays in
place with probability r = 1 − p − q. The walk ends when it hits either of the two
absorbing states m and −m. To make referencing easier we set the independent and
identically distributed random variables

Zi =

⎧
⎪⎨

⎪⎩

1, with probability p,

−1, with probability q,

0, with probability r ,

(2)

i = 1, 2, . . . , n, indicating win or loss by team A, or tie in the i th game. Clearly,
Sn = ∑n

i=1 Zi is the difference in the number of games won by teams A and B after
n games, and team A wins the series if for some n : Sn = m and |Sk | ≤ m − 1 for all
k < n. The determination of P(A), the probability of this occurring, is referred to as
Huygens’ fifth problem in Blom et al. (1994).

Often recurrence relations, implied by difference equations, are used to determine
both the winning probabilities and the expected length of the game as in Feller (1968,
Chapter XIV) and Problem 1582 (1999). For example, it can be seen in Feller (1968,
volume 1, identity (2.4) on p. 345) that

P(A) = λm

1 + λm
= pm

pm + qm
and P(B) = qm

pm + qm
(3)

with

λ = p′/q ′ = p/q (4)
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if p �= q, and P(A) = P(B) = 1/2 otherwise. The role of λ will become transparent
in the martingale approach (Sect. 4). Note that the winning probabilities depend only
on the p to q ratio and not on r (as ties will only affect the length of the game). In
addition to this,

E(N ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(λm − 1)

(p − q)(λm + 1)
= m(P(A) − P(B))

p − q
, if p �= q,

m2

2p
, if p = q,

(5)

cf. Feller (1968, volume 1, Problem #5, p. 367). Some related problems and facts are
discussed in Lengyel (2009). It also offers a way to introduce ties to the classical prob-
lem via a decomposition of the duration N into a random sum of N ′ independent and
identically distributed random variables, the i th term being an arbitrary nonnegative
number Ti , i = 1, 2, . . . , N ′, of ties immediately before the i th win or loss followed
by the win or loss, i.e., N = ∑N ′

i=1(Ti + 1). The distribution of Ti + 1 is geometric
with parameter 1 − r . Thus, for instance, we can relate E(N ) to E(N ′), the expected
duration in the classical problem, by Wald’s identity.

An alternative approach for determining P(A) and E(N ) is to apply the theory of
Markov chains (cf. Kemeny and Snell 1960). We can also use conditioning to calcu-
late P(A). One way to find probabilities of “competing” events is to use a conditional
setting. We consider the random walk (with no absorbing states) on the set of integers
that starts at 0. Now, let E, E1 and E2 be the events that the random walk ever visits
−m, visits m before −m, and −m before m, respectively. It is easy to see (e.g., Feller
1968, volume 1, identity (2.8) on p. 347) that

P(E) =
⎧
⎨

⎩

(
q

p

)m

, if p > q,

1, if p ≤ q.

(6)

For p > q, we have (
q
p )m = P(E)= P(E |E1)P(E1) + P(E |E2)P(E2)= (

q
p )2m

P(A) + (1 − P(A)) which immediately implies (3). Note that identity (6) can be
rephrased as P(supn≥0 Sn ≥ m) = (p/q)m if q > p and m ≥ 0, thus identifying the
distribution of supn≥0 Sn as geometric.

3 Lattice path counting and generating functions

We can use implicit and explicit lattice path counting and generating functions to
derive the winning probabilities and the distribution of duration.

3.1 Path counting

The first approach requires only implicit calculations. The probability P(A) is

P(A) =
∑

n ≥ 0
t ≥ 0

c(n, m, t) pn+mqnr t (7)
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where the factor c(n, m, t) counts the number of ways we can arrange n + m wins, n
losses, and t ties (from the point of view of team A) so that team A reaches its goal of
being ahead of team B by exactly m games for the first time after the last game. By
symmetry,

P(B) =
∑

n ≥ 0
t ≥ 0

c(n, m, t) qn+m pnr t .

We observe that P(A)/P(B) = pm/qm and P(A) + P(B) = 1; therefore,

P(A) = pm

pm + qm
and P(B) = qm

pm + qm
.

On the other hand, c(n, m, t) explicitly counts the number of ways a random walk on
the plane going from (0, 0) to (2n + m + t, m) (i.e., with n + m up steps (1, 1), n
down steps (1,−1), and t horizontal steps (1, 0)) first reaches the boundary |y| = m
on its last move. We define d(n, m) = c(n, m, 0). Clearly,

c(n, m, t) =
(

2n + m + t − 1

t

)

d(n, m) (8)

for the last move cannot be a (1, 0).
For m = 2 we have c(n, 2, t) = (2n+2+t−1

t

)
2n since after pairing the non-horizontal

moves, each pair contains a (1, 1) and a (1,−1) move which yields d(n, 2) = 2n (cf.
Problem 1582 (1999)). If m = 3 then a recurrence-based approach (cf. Stern 1979) or
a standard block walking argument yields

Theorem 1 For m = 2 and 3, the number of paths on the plane from (0, 0) to
(2n + m, m) with n + m up steps (1, 1) and n down steps (1,−1) and first passage to
|y| = m on the last move is d(n, m) = mn.

Now, by plugging this into (7), we can determine P(A). Alternatively, we can
ignore the tied games and focus on winning and losing the other games, but now
with corresponding probabilities p′ and q ′ given in (1). Clearly, for m = 2 and 3,
P(A) = ∑∞

n=0 d(n, m)(p′)n+m(q ′)n = ∑∞
n=0 mn(p′)n+m(q ′)n = (p′)m/(1−mp′q ′)

= pm/(pm +qm), and the expected value and standard deviation of the duration can be
easily computed by (8). For example, if p = q = 1/2 then (E(N ), σ (N )) = (4, 2

√
2)

and (9, 4
√

3) if m = 2 and 3, respectively.
In general, we can use the theory of lattice path counting of Mohanty (1979) and

Narayana (1979), Theorem 2 of Sect. 2.2 of Mohanty (1979) in particular, and that of
the enumeration of Dyck paths to obtain the number of paths going between two (hor-
izontal) boundaries, but the calculations become cumbersome beyond small values
of m.
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3.2 Generating functions

By using the generating function of the probability of absorption at m (i.e., winning by
team A) at the nth game (Feller 1968, volume 1, pp. 349–351), we can systematically,
though implicitly, obtain d(n, m) and any moment of the random variable N . In fact,
if r = 0 then, by using difference equations (Feller 1968, Chapter XIV) derives

gm(x, p, q) =
∞∑

n=0

P(N = n, Sn = m) xn = 1

λm
1 (x) + λm

2 (x)
(9)

and for the probability generating function of the duration N of the game

pm(x, p, q) =
∞∑

n=0

P(N = n) xn

=
(

1

λm
+ 1

)
1

λm
1 (x) + λm

2 (x)
= 1

P(A)
gm(x, p, q) (10)

with λ1(x) = 1+
√

1−4pqx2

2px and λ2(x) = 1−
√

1−4pqx2

2px . Remarkably, the length of the
game has no effect on the winning probabilities (cf. Samuels 1975).

Theorem 2 (Samuels) The duration N and the end point SN , i.e., who wins, are
independent random variables.

Interested readers can find a proof using generating functions and an extension to
the case with ties allowed in single games in Lengyel (2009). (From now on Theorem 2
refers to the extended version.) For a general r ≥ 0, by calculations similar to that in
Feller (1968), we can prove

Theorem 3 We set r = 1 − p − q ≥ 0, λ = p/q, λ1(x) = 1−r x+
√

(1−r x)2−4pqx2

2px ,

and λ2(x) = 1−r x−
√

(1−r x)2−4pqx2

2px . The generating function of the probability of the
duration with team A winning at the nth game and the probability generating function
of the duration N of the game are given by (9) and (10), respectively. The duration N
has no effect on the winning probabilities.

We note that the independence also follows by a simple argument similar to the one
used in Sect. 3.1.

Clearly, g1(x, p, q) = px
1−r x and gm(x, p, q) = pm xm

(1−r x)m−2((1−r x)2−mpqx2)
for

m = 2 and 3 by Sect. 3.1. We note that P(A) = gm(1, p, q) easily reduces to (3) and
E(N ) = g′

m(1, p, q) + g′
m(1, q, p) = p′

m(1, p, q) leads to (5) since it is easy to see
that the power series gm(x, p, q) and pm(x, p, q) are both convergent in an open circle
of radius 1/(1− (

√
p −√

q)2) which thus contains 1 if p �= q. After intensive simpli-
fications, we can determine var(N ) = p′′

m(1, p, q)+ p′
m(1, p, q)− (p′

m(1, p, q))2. If
p = q then by Abel’s convergence theorem, the remaining part of (5) and var(N ) =
m2(2m2+1−6p)

12p2 follow. This latter yields var(N ) = 4m
(m+1

3

)
if p = q = 1/2 (as it
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was observed for m = 2 and 3 in Sect. 3.1). We note that g′′
m(1, p, q) was determined

for p = q = 1/2 in Beyer and Waterman (1979), and Bach (1997) obtained the
first six moments and cumulants of N . He also discussed the arithmetic complexity
of computing the r th moment and a connection to Brownian motion. Aoyama et al.
(2008) use a similar technique to determine the exact first-passage time distribution
of a modified random walk. We will present a martingale-based alternative proof of
Theorem 3 in Sect. 4.3 (although one relying on Theorem 2).

We note that Kac (1945) obtained the exact probability of the duration in the form
of an alternating trigonometric sum of m terms for p = q = 1/2. This guarantees an
asymptotically exponential decrease of P(N = n) at the rate cos(π/2m) as n → ∞.
Karni attempted to find a simple form for P(N = n) if p + q = 1 in Karni (1977,
1978), but only succeeded with some restriction on the length of the duration.

4 Martingale approach

In this section we approach our problems by defining associated martingales (cf.
Baldi et al. 2002; Blom et al. 1994; Lalley 2003; Williams 1991). We say that the
sequence {Yn} forms a martingale with respect to the sequence of random variables
{Xn} if E(|Yn|) < ∞ and E(Yn|X1, X2, . . . , Xn−1) = Yn−1, n ≥ 2. We observe
the Xi s until they satisfy some prescribed stopping condition. We call the number
N of the observed Xi s a stopping time. If P(N < ∞) = 1, E(|YN |) < ∞, and
limn→∞ E(Yn|N > n)P(N > n) = 0 then E(YN ) = E(Y1) by the Optional Stop-
ping Theorem (e.g., Blom et al. 1994).

Note that for our stopping rule E(N ) < ∞ and limn→∞ P(N > n) = 0. In fact,
by a standard argument, the series can be viewed in blocks of 2m consecutive games.
If a block corresponds to a run (or winning streak) of 2m wins for either team then that
team wins (unless the game has already ended). Therefore, P(N > 2m) ≤ 1 − p2m

and similarly, P(N > k · 2m) ≤ (1 − p2m)k , and the distribution of N exhibits an
exponentially decaying right tail.

We note that for any i ≥ 1, Mn = Sn − nE(Zi ) = Z1 + Z2 + · · · + Zn − nE(Zi )

defines a martingale with respect to the independent and identically distributed random
variables Zi s given in (2). In general, Wald’s (first) equation (e.g., Baldi et al. 2002;
Blom et al. 1994; Lalley 2003) yields E(SN ) = E(N )E(Zi ) since E(N ) < ∞.

We also define the constant λ in order to guarantee E(λ−Zi )= 1. This yields
λ = p/q , in agreement with (4), independently of r . It can be verified that the sequence

Rn = λ−Sn , n = 1, 2, . . . , (11)

is also a martingale with respect to the Zi s. (Sometimes it is referred to as Wald’s
martingale.) In fact, E(Rn|Z1, Z2, . . . , Zn−1) = λ−Sn−1 E(λ−Zn ) = λ−Sn−1 = Rn−1.

4.1 Winning probability

Note that E(|RN |) and E(Rn|N > n) both are bounded from above by max{λ−m, λm},
thus the Optional Stopping Theorem applies: E(RN ) = E(R1) = E(λ−Z1) = 1. On
the other hand,
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E(RN ) = E(λ−SN ) = P(A)λ−m + P(B)λm = λm + P(A)(λ−m − λm)

which yields (3) for p �= q (cf. Feller 1968).

4.2 Expected length

If λ �= 1 then by Wald’s equation and E(Zi ) = p − q �= 0 it follows that

E(N ) = E(SN )

E(Zi )
= m P(A) − m P(B)

p − q
,

and by (3)

E(N ) = m(λm − 1)

(p − q)(λm + 1)
.

If p = q then we can use Wald’s second equation (e.g., Baldi et al. 2002, p. 37):
E

(
(SN − N E(Zi ))

2
) = E(N ) var(Zi ) which turns into E(N ) = E(S2

N )/var(Zi ) =
m2/(2p), verifying the remaining part of (5).

4.3 Higher moments of N

The random variable Rn is a special case of likelihood ratio martingales (see Feller
1968, volume 2, pp. 211–212; Lalley 2003). In general,

Rn(θ) =
n∏

i=1

eθ Zi

φ(θ)

with the moment generating function φ(θ) = E(eθ Zi ) = peθ + qe−θ + r of Zi

for any real θ . As above, by the Optional Stopping Theorem, we get E(RN (θ)) =
E(R1(θ)) = 1. Now we can observe that φ(− ln λ) = 1 and thus, in fact, the Rn

defined in (11) is Rn = Rn(− ln λ) = λ−Sn .

Remark Let pZi (s) = ∑
k sk P(Zi = k) be the probability generating function of Zi

(this time defined for an integer valued random variable Zi taking both positive and
negative values; therefore, pZi (s) is a Laurent polynomial). If λ �= 1 then the equation
pZi (s) = E(s Zi ) = φ(ln s) = 1 has two roots: s = 1/λ = q/p and the trivial s = 1.
We note that this and other properties of pZi (s) are applied in Ethier and Khoshnevisan
(2002) to obtain bounds on P(A) for a more complicated profit variable Zi .

The convex function φ(θ) takes its minimum 1−(
√

p−√
q)2 at θmin = − 1

2 ln λ. Let
us assume that θ ≥ 0 and λ = p/q > 1 which guarantee that φ(θ) ≥ 1. This will also
be the case for all θ if p = q. Then, by way of Wald’s third equation in Lalley (2003),
i.e., for any bounded stopping time N ∧ n (the truncation to the smaller of N and n) :
1 = E(RN∧n(θ)) = E

(
eθ SN∧n

φN∧n(θ)

)
, and by the dominated convergence theorem as
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n → ∞, it follows that

1 = E

(
eθ SN

φN (θ)

)

. (12)

In fact, limn→∞ eθ SN∧n

φN∧n(θ)
= eθ SN

φN (θ)
since we have P(N < ∞) = 1 (as E(N ) is finite

here), eθ SN∧n ≤ max{eθm, e−θm} and φ(θ) ≥ 1; thus, eθ SN∧n

φN∧n(θ)
≤ max{eθm, e−θm} for

all n ≥ 0.
By an argument similar to the derivation of the probability generating function

of the first passage time to 1 in Williams (1991), the probability generating function
(10) can be also easily derived from (12) without the technical overhead of differ-
ence equations referred to in Sect. 3.2. Toward this end, we now substitute 1/x =
φ(θ) = p/u + qu + r with u = e−θ , which yields u = 1−r x−

√
(1−r x)2−4pqx2

2qx and

u−1 = 1−r x+
√

(1−r x)2−4pqx2

2px since x < 1 implies θ > 0 and thus u < 1 if p > q. If

p = q then u ≤ u−1 for all x ≤ 1, thus u ≤ 1. We shall need Theorem 2 of Sect. 3.2. By
conditioning in (12) we obtain that 1 = ∑∞

n=0 E(eθ SN x N | N = n, Sn = m) P(N =
n, Sn = m) + ∑∞

n=0 E(eθ SN x N | N = n, Sn = −m) P(N = n, Sn = −m) =∑∞
n=m eθm P(A) P(N = n) xn +∑∞

n=m e−θm P(B) P(N = n) xn = E(eθ SN )E(x N ).
Thus,

pN (x) = E(x N ) = 1/E(eθ SN ) = 1/(P(A)u−m + P(B)um) (13)

and (10) follows immediately for all x ≤ 1 (since 1/x = φ(θ) ≥ 1) and arbitrary
choices of p and q (as the case q > p is similar). Note that we can extend the range
of x if p �= q by Sect. 3.2.

In addition to this, if p �= q then by expanding pN (x) about x = 1 we can deter-
mine the moments of N . We define the inverse function of φ: let φ−1(u) be the unique
value v : − 1

2 ln λ ≤ v < ∞, so that φ(u) = v. (The case λ < 1 is similar.) Note that
we can take the derivative of φ−1(u) repeatedly around 1. From pN (x) = 1/E(eθ SN )

with θ = φ−1(1/x) we can derive the probability generating function of N which can
help us to determine exactly or to approximate the probability distribution of N . In
fact, carrying out the moment calculations by applying the approximation is a little
easier than using (10) directly. For instance, by p′

N (1) = E(N ) and the first order
approximation of the function φ−1 we get (5). The second order approximation and
var(N ) = p′′

N (1) + p′
N (1) − (p′

N (1))2 lead us to the calculation of the variance of N
provided that pN (x), thus φ−1(x), is differentiable around 1, i.e., if p �= q.

On the other hand, if p = q then we can use our findings of Sect. 3.2. Combining
these cases, we obtain

Theorem 4

var(N ) =

⎧
⎪⎪⎨

⎪⎪⎩

m(P(A) − P(B))

p − q

(
p + q

(p − q)2 − 1

)

− 4m2 P(A)P(B)

(p − q)2 , if p �= q

m2(2m2 + 1 − 6p)

12p2 , if p = q ≤ 1/2.
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Higher moments of N can be derived in a similar fashion. The moment generat-
ing function of N can be obtained by MN (t) = E(et N ) = pN (et ) (or simply by
substituting t = − ln φ(θ) into identity E(1/φN (θ)) = 1/E(eθ SN ) if p �= q).

4.4 The distribution of N if p = q = 1/2

Note that for the contest in (m, 1) format, i.e., the best m of 2m−1 (or World) series, the
convergence of the duration W Sm to the normal variable is completely characterized
in Menon and Indira (1983). Unfortunately, as they note it, the normal approximation
is not valid for values of p close to 0, 1/2, or 1. In the case of p = q = 1/2, Stadje
(1998) found that (2m − W Sm)/(

√
2m), as m → ∞, has the limit distribution of

the absolute value of a standard normal random variable. We also note that a remark-
able closed form was given by Stirzaker (1988) for the double generating function of
2m − W Sm , if p = q = 1/2.

We now focus on the distribution of the duration N for contests in (m, m) format
with p = q = 1/2. The moment generating function of Zi is φ(θ) = cosh(θ), hence
by identity (13) the probability generating and moment generating functions of N are
pN (x) = 1/ cosh (mθ) = 1/Tm(cosh(θ)) = 1/Tm(1/x) with θ = arccosh(1/x) ≥ 0
(cf. Feller 1968, volume 1, identity (5.4) on p. 352) and

MN (t) = 1

Tm(e−t )
, (14)

respectively, with Tm(x) being the mth Chebyshev polynomial of the first kind (cf.
Comtet 1974; Weisstein 2002). As one of the referees pointed it out, this relation can
be also derived directly from (9) using the fact that

Tm(x) = (x − √
x2 − 1)m

2
+ (x + √

x2 − 1)m

2
.

Note that the relation of Chebyshev polynomials of the second kind to Dyck path
enumeration has been explored elsewhere, e.g., in Krattenthaler (2001).

In this case, we find below the exact distribution of N in terms of a sum of indepen-
dent but not identically distributed random variables of various geometric distributions
(Theorem 5). We also derive the limit Theorem 6 which can be used to approximate the
distribution of N . We note that the methods presented here and leading to Theorems 5
and 6 do not seem to generalize to unequal single game winning probabilities or when
r > 0.

4.4.1 Exact distribution

Theorem 5 Let p = q = 1/2 and ri = cos (2i−1)π
2m , i = 1, 2, . . . , m, be the roots of

the mth Chebyshev polynomial of the first kind. We define Ri : 0 < Ri = −rirm−i+1 =
r2

i < 1, i = 1, 2, . . . , 	m/2
, and consider 	m/2
 independent random variables
Xi ∼ Geometric(1 − Ri ), i = 1, 2, . . . , 	m/2
. In this case, the distribution of the
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half-duration N/2 is identical to that of
∑	m/2


i=1 Xi + δm with δm = 1/2 if m is odd
and 0 otherwise, yielding E(N ) = m2 and var(N ) = 2m2(m2 − 1)/3.

Proof of Theorem 5. We factor the mth Chebyshev polynomial to find a decomposi-
tion of random variable N/2 into a sum of other variables. Observe that Tm(x) =
2m−1 ∏m

i=1(x − cos (2i−1)π
2m ) (cf. Weisstein 2002). Clearly, the roots cos (2i−1)π

2m and

cos (2m−2i+1)π
2m , i = 1, 2, . . . , 	m/2
, are symmetric about zero. Thus every Ri =

−rirm−i+1, i = 1, 2, . . . , 	m/2
, falls strictly between zero and one. If m is odd then
there is an extra root at zero.

We prove the theorem for m even. In this case, we have Tm(x) = 2m−1 ∏	m/2

i=1

(x2 − Ri ). First we note that

m∏

i=1

(1 − ri ) =
	m/2
∏

i=1

(1 − Ri ) = 1/2m−1 (15)

by the generating function (cf. Comtet 1974; Weisstein 2002)

g(t, x) = 1 − xt

1 − 2xt + t2 =
∞∑

m=0

Tm(x)tm = 1

2
+ 1

2

1 − t2

1 − 2xt + t2 . (16)

In fact, we have Tm(1) = 2m−1 ∏	m/2

i=1 (1 − Ri ) = 2m−1 ∏m

i=1(1 − ri ). On the
other hand, the coefficient of tm of g(t, 1) = 1/(1 − t) is equal to Tm(1), hence
[tm] g(t, 1) = 1 = 2m−1 ∏m

i=1(1 − ri ).
Therefore, by identities (14) and (15) we have that MN/2(t) = 1

Tm (e−t/2 )
=

1

2m−1
∏	m/2


i=1 (e−t −Ri )
= 1

2m−1
∏	m/2


i=1 (1−Ri )

∏	m/2

i=1

(1−Ri )et

1−Ri et = ∏	m/2

i=1 MXi (t) with Xi ∼

Geometric(1 − Ri ), i = 1, 2, . . . , 	m/2
.
If m is odd then there is an extra factor x in Tm(x) which results in an extra factor

et/2 in MN (t/2) which is the moment generating function of the constant 1/2. We leave
the details to the reader. The expected value and variance of N follow by Sect. 4.2 and
Theorem 4. �
Remark An alternative derivation of E(N ) and var(N ) also follows from the above
decomposition, and higher moments can be computed similarly. First, we define the
generating function of the kth power sum of the roots of Tm(x) by S(x) = ∑∞

k=1 Sk xk ,
Sk = ∑m

i=1 rk
i , k = 1, 2, . . . , and the corresponding alternating generating function

of the elementary symmetric polynomials: �(x) = ∑∞
k=0(−1)k�k xk , �0 = 1,�k =∑

1≤i1<i2<···<ik≤m ri1ri2 · · · rik , k = 1, 2 . . . , m, and �k = 0 if k > m. The Newton–
Girard formulas can be rewritten as

− x�′(x)/�(x) = S(x). (17)

Next we derive that µm = ∑	m/2

i=1

1
1−Ri

+δm = m2/2 and σ 2
m = ∑	m/2


i=1
Ri

(1−Ri )
2 =

m2(m2 − 1)/6 for the half-duration. To prove these identities we observe that
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∑m
i=1

1
1−ri

= 2
( ∑	m/2


i=1
1

1−Ri
+ δm

)
and

∑m
i=1

ri
(1−ri )

2 = 4
∑	m/2


i=1
Ri

(1−Ri )
2 , then de-

velop the left hand sides as series involving power sums of the roots ri . For
instance,

∑m
i=1

1
1−ri

= ∑m
i=1

∑∞
k=0 rk

i = ∑∞
k=0

∑m
i=1 rk

i = ∑∞
k=0 Sk and similarly,

∑m
i=1

ri
(1−ri )

2 = ∑∞
k=1 kSk .

We specialize (17) by setting �(x) = ∏m
i=1(1 − ri x) = xm Tm(1/x)/2m−1 which

yields

S(x) = −m + T ′
m(1/x)

xTm(1/x)
. (18)

Clearly, Tm(1) = 1, T ′
m(1) = m2, T ′′

m(1) = m2(m2 − 1)/3, and T ′′′
m (1) = 8m

(m+2
5

)

by deriving the partial derivatives gx (t, 1), gxx (t, 1), and gxxx (t, 1) based on (16).
For instance,

∑∞
m=1 T ′

m(1)tm = gx (t, 1) = t (1+t)
(1−t)3 = ∑∞

m=1 m2tm . In general, using

a standard formula to calculate the nth derivative of the reciprocal of the function
1 − 2xt + t2, we can derive that T (n)

m (1) = 2n−1n!((m+n
m−n

)+ (m+n−1
m−n−1

))
for n ≥ 1. Now

we can calculate S(1) + m = ∑∞
k=0 Sk and S′(1) = ∑∞

k=1 kSk by (18) to obtain µm

and σ 2
m .

Despite the decomposition, other moments require more involved calculations, e.g.,

we need
∑	m/2


i=1
2−3Ri +R2

i
(1−Ri )

3 in order to obtain the third central moment of the half-dura-
tion.

We also note that there has been some interest in determining the asymptotic behav-
ior of the raw moments of the duration N as m → ∞. The normalized duration
N/m2 captures the asymptotic features even better. In fact, the first few raw moments
are µ′

1 = 1, µ′
2 = 5/3 + o(1), µ′

3 = 61/15 + o(1), µ′
4 = 277/21 + o(1) and

µ′
5 = 50521/945 + o(1) as m → ∞, and according to Bach (1997), the error terms

are functions of 1/m2. The moment µ′
k = E

(
(N/m2)k

)
converges to a finite positive

constant ck for any integer k ≥ 1 as m → ∞, however, determining ck for large values
of k remains a numerically challenging problem.

4.4.2 Approximating the distribution

Unfortunately, none of the usual criteria (cf. Weisstein 2002), e.g., the Lyapunov con-
dition, work here and thus, this approach does not guarantee the normal limit law for N .
However, we can approximate the distribution of N by using only a small percentage
of the largest terms of the decomposition in Theorem 5. For instance, let f (m)= 	cm

with any c : 0 < c < 1, and take the sum Y1 = ∑ f (m)

i=1 Xi . The above arguments show
that N/2 = Y1 + E1 so that E(2Y1) ∼ m2, E(E1) = �(m), var(2Y1) ∼ 2m4/3, and
var(E1) = �(m).

Taking this a little further, we can approximate N by using only an asymptotically
zero percent of the terms plus an approximately normally distributed error term of a
smaller magnitude.

Theorem 6 Let f (m) = 	m1−ε
 with any ε : 0 < ε < 1/5 and consider the sum
Y2 = ∑ f (m)

i=1 Xi (where the Xi s are as in Theorem 5). For N/2 = Y2 + E2 we get that
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E(2Y2) ∼ m2, E(E2) = O(m1+2ε), var(2Y2) ∼ 2m4/3, and var(E2) = O(m1+4ε)

and E2 has an asymptotically normal distribution.

Proof of Theorem 6. We consider only the case with m even. In fact, we need that
∑	m/2


i=1
1

1−Ri
= ∑ f (m)

i=1
1

((2i−1)π/(2m))2 + mO( m2

f (m)2 ) = 4m2

π2

∑ f (m)
i=1

1
(2i−1)2

+ O(m1+2ε) = 4m2

π2
π2

6
3
4 + O(m1+2ε) = m2

2 + O(m1+2ε). Here we used the approx-

imation 1 − Ri = (
(2i−1)π

2m

)2 + O(m−4) for Ri = cos2 (2i−1)π
2m where i ≤ cm for

some sufficiently small c > 0. Similarly,
∑	m/2


i=1
Ri

(1−Ri )
2 = ∑ f (m)

i=1
1

((2i−1)π/(2m))4 −
∑ f (m)

i=1
1

((2i−1)π/(2m))2 + mO( m4

f (m)4 ) = 16m4

π4

∑ f (m)
i=1

1
(2i−1)4 − m2

2 + O(m1+4ε) =
16m4

π4
π4

90
15
16 − m2

2 + O(m1+4ε) = m4

6 − m2

2 + O(m1+4ε).

We set g(x, n) = ∑∞
k=0 kn xk = An(x)

(1−x)n+1 , n ≥ 1, with An(x) being the nth
Eulerian polynomial (cf. Comtet 1974; Lengyel 1996), which guarantees that g(1 −
p, k) ≤ k!p−(k+1) since Ak(x) ≤ k! if |x | ≤ 1. Observe that for the raw moments
µ′

k = E(Xk
i ) = ∑∞

j=1 j k(1 − p) j−1 p = p
1−p g(1 − p, k) ≤ p

1−p k!p−(k+1) =
O(m2k/ f (m)2k) holds with p = 1 − Ri = �( f (m)2/m2) for i : f (m) ≤ i ≤
(1+δ) f (m) with any sufficiently small δ > 0. This implies an upper bound on the mag-
nitude of the central moments µk = E((Xi − E Xi )

k)=∑k
j=0

(k
j

)
(−1)k− jµ′

j (µ
′
1)

k− j =
O(m2k/ f (m)2k) by induction on k.

Now we check the Lyapunov condition (Weisstein 2002) for E2 = ∑	m/2

i= f (m)+1 Xi

with some positive α. First we note that E
(
(Xi − E Xi )

2+α
) ≤ P(|Xi − E Xi |

< 1) + E
(
(Xi − E Xi )

4
) = E

(
(Xi − E Xi )

4
) + O(1) as m → ∞. This leads to

max f (m)+1≤i≤	m/2
 E(|Xi − E Xi |2+α)
∑	m/2


i= f (m)+1 E(|Xi − E Xi |2+α)

≤ max f (m)+1≤i≤	m/2
 E(|Xi − E Xi |4) + am
∑	m/2


i= f (m)+1 E((Xi − E Xi )2) − bm

≤ E
(
(X f (m)+1 − E X f (m)+1)

4
) + am

∑	m/2

i= f (m)+1 var(Xi ) − bm

≤
Cm8

f (m)8

∑	m/2

i= f (m)+1

Ri
(1−Ri )

2

≤
Cm8

f (m)8

∑	(1+δ) f (m)

i= f (m)+1

Ri
(1−Ri )

2

= O

⎛

⎝

m8

f (m)8

f (m) m4

f (m)4

⎞

⎠ = O

(
m4

f (m)5

)

= o(1)

for any sufficiently large C > 0, positive am = O(1) and bm = O(m) as m → ∞.
Hence the limit of the leftmost ratio is 0, and the approximate normality of E2 follows.

�
From the above proof it is clear that the condition on ε : 0 < ε < 1/5 can be

improved.
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