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a b s t r a c t

We determine the distribution of duration in the gambler’s ruin problem given that one
specific player wins. In this version we allow ties in the single games. We present a unified
approach which uses generating functions to prove and extend some results that were
obtained in [Frederick Stern, Conditional expectation of the duration in the classical ruin
problem, Math. Mag. 48 (4) (1975) 200–203; S.M. Samuels, The classical ruin problem
with equal initial fortunes, Math. Mag. 48 (5) (1975) 286–288;W.A. Beyer, M.S. Waterman,
Symmetries for conditioned ruin problems, Math. Mag. 50 (1) (1977) 42–45].

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the classical gambler’s ruin problemwe are interested in the probability of ruin and the probability distribution of the
duration of the game (and sometimes, of first-passage times); cf. [4]. The results are well known. But what if we want to
answer these questions under the assumption that one specific player wins?

In the gambler’s ruin problem, two players play a series of single games in which one dollar changes hands until one
player goes bankrupt. Let s (start) and g (goal) be positive integers with s < g . One player (to whom we refer as ‘‘our
player’’) starts with an initial capital of s dollars while the other player has g − s dollars, and in each single game our player
either wins $1 with probability p or loses it with probability q. We will also allow ties with probability r = 1 − p − qwhen
no money is changed. We will assume that 0 < p, q < 1 and 0 ≤ r < 1.

In the language of Markov chains, there are two absorbing states, 0 and g . Our player starts at state s, 1 ≤ s ≤ g − 1, and
the game ends when this player first reaches either state 0 or g . Let Sn be the capital of our player after n games and N be
the duration of the game. Thus, S0 = s and SN is either 0 or g . We note that the case with s = m and g = 2m corresponds to
the popular winning-a-series-by-m-games scheme in sports (often combined with a requirement on the minimum number
of games to be won) [5].

In Section 2, we exhibit generating function based proofs of some facts regarding the conditional gambler’s ruin problem
with ties allowed in the single games. Section 3 outlines approaches for obtaining the expected duration of the conditional
game for p = q ≤ 1/2. Results concerning some games with several players are summarized in Section 4 indicating that
these games exhibit characteristics different from those of the two-player games.

2. Some generalizations: Conditioning and different goals

Conditioning randomwalks with absorbing boundaries attracted some attention in the seventies in the context of cancer
growth modeling [6]. In particular, there was significant interest in estimating the expected time for a cancerous clone of
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cells to reach tumor size from a single wayward cell, given that the tumor size is reached, rather than dying off before
reaching tumor size. The analysis can help to determine the appearance of the first wayward cancerous cell, and perhaps,
to identify reasons for the cancerous growth.

Let A denote the event that our player wins, i.e., SN = g , with S0 = s and Si 6= 0 and g , for all i : 0 < i < N . The
distribution of the conditional duration is P(N = n | A) with n = g − s, g − s + 1, . . ..

Stern [1] observed a surprising symmetry:

Theorem 1 (Stern). The expected conditional durations are equal for p, 0 < p < 1, and q = 1 − p, given that the walk starts at
the middle, i.e., s = m and g = 2m.

Samuels [2] improved this theorem and got the stronger result in

Theorem 2 (Samuels). Under the conditions of Theorem 1, the duration N and the end point SN , i.e., who wins, are independent.

Beyer andWaterman [3] generalized Stern’s result to the case when the two players may have different goals, i.e., if they
start with not necessarily equal initial fortunes, e.g., g − s 6= s, by using combinatorial arguments. They found that the
transition probabilities of the walk conditioned on our player winning depend on the actual position and are symmetric in
p and q = 1 − p [3, Theorem]. They also proved that this implies

Theorem 3 (Beyer and Waterman). The duration conditioned on our player winning, P(N = n | A), is symmetric in p and q.

After stating the generalizations of these theorems to the case in which ties are allowed, we will prove them by using
generating functions.

Theorem 4. The expected conditional durations are equal for p, 0 < p < 1, and q = 1− p− r, given that the walk starts at the
middle, i.e., s = m and g = 2m.

Theorem 5. Under the conditions of Theorem 4, the duration N and the end point SN , i.e., who wins, are independent.

Theorem 6. The duration conditioned on our player winning, P(N = n | A), is symmetric in p and q, even if ties are allowed.

Clearly, the theorems are true if p = q; thus, we assume that p 6= q from now on. We need some preliminaries.
We set Us,g(x, p) =

∑
∞

n=0 P(N = n, A) xn, i.e., the generating function of the probability of winning the series by our
player at the nth single game, and fs,g(x, p) =

∑
∞

n=0 P(N = n) xn the unconditional probability generating function of the
duration. (For the sake of notational simplicity, we indicate only the probability parameter p of winning in a single game
rather than all three parameters p, q, and r but will explicitly include the other parameters where necessary, e.g., Us,g(x, p)
stands for Us,g(x, p, q, r).) It is easy to see that the probability of winning by this player is

P(A) = Us,g(1, p) =

1 −

(
q
p

)s

1 −

(
q
p

)g ,

and it remains true even if ties are allowed. Indeed, if we want to determine the winning probabilities only, we can ignore
games that end in a tie, and therefore, we can use

p′
=

p
p + q

and q′
=

q
p + q

(1)

to denote the probability of winning and losing a game, respectively, given that the game is not a tie. This implies that

1 −

(
q′

p′

)s

1 −

(
q′

p′

)g =

1 −

(
q
p

)s

1 −

(
q
p

)g .

Now we follow an approach outlined in [4, Chapter XIV] to find the generating function of the probability of winning at
the nth single game with ties being allowed. This generating function can be written as

Us,g(x, p) = A(x, p)λs
1(x, p) + B(x, p)λs

2(x, p), 0 ≤ s ≤ g,

with the boundary conditions U0,g(x, p) = 0 and Ug,g(x, p) = 1. Note that λ1(x, p) =
1−rx+

√
(1−rx)2−4pqx2

2px and λ2(x, p) =

1−rx−
√

(1−rx)2−4pqx2

2px are the solutions to the underlying characteristic equation which is based on the recurrence relation

Us,g(x, p) = pxUs+1,g(x, p) + rxUs,g(x, p) + qxUs−1,g(x, p), 1 ≤ s ≤ g − 1.
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After determining that A(x, p) = −B(x, p) =
(
λ
g
1(x, p) − λ

g
2(x, p)

)−1, we get

Us,g(x, p) =
λs
1(x, p) − λs

2(x, p)
λ
g
1(x, p) − λ

g
2(x, p)

, 0 ≤ s ≤ g. (2)

Wenote that for the unconditional case, the conditions on f are identical to those onU except that the boundary condition
f0,g(x, p) = 1 replaces U0,g(x, p) = 0. Thus the probability generating function of the duration is

fs,g(x, p) =
λs
1(x, p)(1 − λ

g
2(x, p)) − λs

2(x, p)(1 − λ
g
1(x, p))

λ
g
1(x, p) − λ

g
2(x, p)

, (3)

for all s : 0 ≤ s ≤ g .
We are now ready to prove the generalization of Samuels’ result, Theorem 5, using generating functions. Theorem 4 then

follows immediately.

Proof of Theorem 5. In fact, we want to check whether

∞∑
n=0

P(N = n, A) xn = P(A)

∞∑
n=0

P(N = n) xn,

i.e., whether N and SN are independent random variables. We now prove that this is true if s = m and g = 2m. By identities
(2) and (3), we get that

∞∑
n=0

P(N = n)xn

∞∑
n=0

P(N = n, A)xn
=

fs,g(x, p)
Us,g(x, p)

= 1 + (λ1(x, p)λ2(x, p))s
λ
g−s
1 (x, p) − λ

g−s
2 (x, p)

λs
1(x, p) − λs

2(x, p)
. (4)

Since λ1(x, p)λ2(x, p) = q/p, this implies that the ratio in (4) is

1 +

(
q
p

)s

=
1

P(A)
.

Therefore, in this case the probability generating function f is exactly 1/P(A) times the generating function Us,g . Note that
the ratio is free of x.

On the other hand, it is easy to see that if s 6= g − s then the ratio in (4) is not identically equal to a constant for all
p, 0 < p < 1. �

Proof of Theorem 6. We prove that P(N = n | A) is symmetric in p and q. By the definition of λ1(x, p) and λ2(x, p), we get
that

λk
1(x, p) − λk

2(x, p) =
(2qx)k

(2px)k
(
λk
1(x, q) − λk

2(x, q)
)

for any k ≥ 0. According to (2), this implies that

Us,g(x, p, q, r)
Us,g(x, q, p, r)

=
pg−s

qg−s
=

1 −

(
q
p

)s

1 −

(
q
p

)g

1 −

(
p
q

)g

1 −

(
p
q

)s =
Us,g(1, p, q, r)
Us,g(1, q, p, r)

,

which is free of x. By comparing the coefficients of the terms of xn in Us,g(x, p, q, r)/Us,g(1, p, q, r) and Us,g(x, q, p, r)/
Us,g(1, q, p, r), it follows that

P(N = n | A) =
P(N = n, A)

P(A)

is the same when p and q are exchanged. �
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3. The expected conditional duration

We can also generalize Stern’s other result [1] on the expected duration conditioned on our player winning in the case of
p = q. The purpose of this section is to show how to obtain this result by other methods, and in particular, by determining
the generating function of the duration by means of lattice path combinatorics. The latter approach might help to extend
the investigation to games with p 6= q.

Theorem 7 (Stern).With p = q = 1/2 and Es,g(1/2) = E(N | A), we have that

s
g
Es,g(1/2) = lim

x→1−
U ′

s,g(x, 1/2) =
s
g
g2

− s2

3
(5)

where U ′
s,g(x, p) stands for

∂
∂xUs,g(x, p).

One of the simplest nontrivial examples for the conditioned gambler’s ruin has s = 1 and g = 3 with r = 0. The letters
W and L stand for winning and losing $1, respectively. (For short, we write Es,g in place of Es,g(1/2).)

Example 1. With the usual symbolic setting and translation (e.g., [7] or [8]) we get for the generating function that

(WpLq)∗WpWp ⇒ U1,3(x, p) =
p2x2

1 − pqx2

which becomes U1,3(x, 1/2) =
x2/4

1−x2/4
, and thus, 1

3E1,3 = 8/9 if p = q = 1/2.

We note the relation between the unconditional and conditional expected durations E(N) =
s
g Es,g +

g−s
g Eg−s,g . It

immediately implies that E(N) is 2 in the above example.
Proof of Theorem 7. This can be proven by using harmonic functions or generating functions. The former is based on the
fact that as,g =

s
g Es,g +

s3
3g with a0,g = 0 and ag,g =

g2

3 is a harmonic function in s : 0 < s < g . We can easily see that
as,g =

sg
3 which implies (5).

The latter approach works by approximating Us,g(1 − ε, 1/2) and U ′
s,g(1 − ε, 1/2) about ε = 0 or by symbolic tools. For

example, the first-order approximation yields Us,g(1 − ε, 1/2) =
s
g −

s(g2−s2)
3g ε + O(ε2), while the Mathematica command

Series[D[ λ1[x,1/2]s−λ2[x,1/2]s

λ1[x,1/2]g−λ2[x,1/2]g
, {x, 1}]/.x → 1 − ε, {ε, 0, 0}] //Simplify implies (5). �

The above proof can be easily generalized to games with ties allowed:

Theorem 8. With p = q =
1−r
2 and Es,g

( 1−r
2

)
= E(N | A), we have that

s
g
Es,g

(
1 − r
2

)
= lim

x→1−
U ′

s,g

(
x,

1 − r
2

)
=

s
g
g2

− s2

3
1

1 − r
(6)

where U ′
s,g(x, p) stands for

∂
∂xUs,g(x, p).

Another proof of Theorem 8. The conditional duration can be written as a random sum of N ′ independent and identically
distributed random variables; the ith is made of an arbitrary nonnegative number Ti, i = 1, 2, . . . ,N ′, of ties immediately
before the ith win or loss followed by the win or loss, i.e.,

N =

N ′∑
i=1

(Ti + 1). (7)

The distribution of Ti + 1 is geometric with parameter 1 − r , and thus, by Wald’s identity and Theorem 7, we get that
s
g Es,g(1/2) ·

1
1−r , i.e., identity (6). �

An alternative derivation of the generating function is based on the correspondence between games and paths by the
theory of lattice path combinatorics; cf. [7]. Flajolet and Guillemin developed an approach in terms of a fundamental
continued fraction and its associated convergent polynomials to construct the underlying generating function.We illustrate
this approach by sketching the proof of (5) for the symmetric game with p = q = 1/2 and s = 1. Readers are advised to
consult [7] for technical details.

Using identities for the generating function of upcrossings with standard ‘‘combinatorial morphism’’ [7, Sections 2.3–4],
we have for g ≥ 2 that

U1,g(x, 1/2) =
Ag−1(x)
Qg−1(x)

,

with Ag(x) = (x/2)g and, thus, A′
g(1) = g/2g , g ≥ 0. At the core of this method are the polynomials Qh = Qh(x) that satisfy

the second-order recurrence
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Qh+1 = Qh − ah−1bhQh−1, h ≥ 0, (8)

with ai−1 = bi = x/2, i ≥ 1, the convention a−1b0 = 1, and the initial conditions Q−1 = 0 and Q0 = 1 [7, Definition 1].
Determining these polynomials via (8) is instrumental in the analysis of the generating function.

The main observation is that we are able to determine Qg(1) and Q ′
g(1) without completely constructing Qg(x). In fact,

we set the generating function

q(t, x) =

∞∑
n=0

Qn(x)tn

of the polynomials Qn(x), n ≥ 0, and get that

q(t, x) =
1

1 − t +
x2
4 t2

. (9)

Note that here q(2t/x, x) is the generating function of the Chebyshev polynomials (with argument x) of the second kind at
1/x; cf. [9].

To make things a little simpler, we observe that q(2t, 1) = (1 − t)−2 and ∂
∂xq(2t, 1) = −

2t2

(1−t)4
which yield that Qg(1)

=
g+1
2g and Q ′

g(1) = −
g(g2−1)

3·2g . Putting everything together we get that U ′

1,g(1, 1/2) =
g2−1
3g .

4. Several players

Wenote that the gambler’s ruin problem can be generalized to K ≥ 2 players.We include some interesting facts showing
succinct differences from the two-player setting even if ties are not allowed and the winning probabilities are equal.

In the generalized setting two or more players have equal initial resources but possibly different winning probabilities,
pi, i = 1, 2, . . . , K . In one of the popular versions, in every single game, one player, say the ith player, is randomly chosen
to be the winner with probability pi, and one dollar is paid to the winner by each of the other K − 1 players. Typically, ties
are not considered. The duration until the first or all but one player go bankrupt is analyzed. Note that for K ≥ 3 players, it
is possible for more than one player to be ruined at the same time, at the first ruin time. Rocha and Stern [10] found that the
independence of the duration N until first ruin and which player is ruined can be extended to K -player asymmetric games,
K ≥ 2, with equal initial fortunes m provided that 1 ≤ m ≤ K + 1. Here an asymmetric game means that the individual
single gamewinning probabilities can be different for the K players. Somewhat surprisingly, the independence breaks down
for K = 3 andm = 5, even for the symmetric game, as was shown in [11].We note that for gameswith equal initial fortunes
m, the duration of the game must be congruent to m mod K , and P(N = m) = 1 for 1 ≤ m < K , and P(N−m mod K

K = t)
decreases exponentially as the nonnegative integer t → ∞, for m ≥ K [11, Theorem 3]. They also considered asymptotic
results for the expected duration and, in the case of symmetric games, for the individual and combined ruin probabilities
provided thatm − K remains fixed as K → ∞ [11, Theorems 4 and 5].

In general, after renormalization similar to (1), the winning probabilities are not affected by allowing ties as ties can
be ignored from the point of view of winning. Most results regarding the expected duration E(N) can be extended by the
method of the proof of Theorem 8 via the summation (7).
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